• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mathematical modelling of mitotic controls

Rata, Scott January 2018 (has links)
The mitotic cell cycle is fundamental to eukaryotic life. In mitosis, replicated chromosomes are segregated to form two new nuclei. This is essential to ensure the maintenance of chromosome number between parent and daughter cells. In higher eukaryotes, numerous cytological changes occur to facilitate the separation of the genetic material: the nuclear envelope breaks down, the mitotic spindle assembles, and the cell rounds-up. There is a well-conserved control network that regulates these processes to bring about the entry into mitosis, the separation of the genetic material, and the reversal of these processes during mitotic exit. To build a coherent model of these regulatory networks requires us to write the biochemical reactions in mathematical form. The work in this Thesis pertains to three fundamental switches: entry into mitosis, the metaphase-to-anaphase transition, and exit from mitosis. I present three studies from a systems-level perspective. The first investigates a novel bistable mechanism controlling mitotic entry/exit in vitro using purified proteins. Dephosphorylation of Greatwall kinase by the phosphatase PP2A-B55 creates a double negative feedback loop that gives a bistable system response with respect to cyclin-dependent kinase 1 (Cdk1) activity. The second looks at hysteresis between mitotic entry and mitotic exit in HeLa cells. Hysteresis persists when either of the regulatory loops of Cdk1 or its counter-acting phosphatase PP2A-B55 is removed, but is diminished when they are both removed. Finally, the regulation of separase in the metaphase-to-anaphase transition is analysed. Separase that is liberated from securin inhibition is isomerised by Pin1 into a conformation that can bind to cyclin B1. This binding peaks after separase has cleaved cohesin and initiated anaphase.
2

Spatiotemporal regulation of the Greatwall : PP2A axis is required for mitotic progression

Wang, Peng 09 1900 (has links)
Le cycle cellulaire est hautement régulé par la phosphorylation réversible de plusieurs effecteurs. La kinase dépendante des cyclines Cdk1 déclenche la mitose en induisant le bris de l’enveloppe nucléaire, la condensation des chromosomes et la formation du fuseau mitotique. Chez les animaux métazoaires, ces évènements sont contrés par la protéine phosphatase PP2A-B55, qui déphosphoryle plusieurs substrats de Cdk1. La kinase Greatwall (Gwl) est activée par le complexe cycline B-Cdk1 en début de mitose et induit ensuite l’inhibition de PP2A-B55 via Endos/Arpp19. Toutefois, les mécanismes moléculaires qui régulent Gwl sont encore peu connus. Nous avons montré que Gwl a une activité s’opposant à PP2A-B55, qui collabore avec la kinase Polo pour assurer l’attachement du centrosome au noyau et la progression du cycle cellulaire dans le syncytium de l’embryon de la drosophile. Ensuite, nous avons trouvé dans des cellules de drosophile que Gwl est localisée au noyau pendant l’interphase, mais qu’elle se relocalise au cytoplasme dès la prophase, avant le bris de l’enveloppe nucléaire. Nous avons montré que cette translocation de Gwl est cruciale pour sa fonction et qu’elle dépend de la phosphorylation de plusieurs résidus de la région centrale de Gwl par les kinases Polo et Cdk1. Cette région centrale contient également deux séquences de localisation nucléaire (respectivement NLS1 et NLS2). De plus, nos résultats suggèrent que la phosphorylation de Gwl par la kinase Polo promeut sa liaison avec la protéine 14-3-3ε, ce qui favorise la rétention cytoplasmique de Gwl. Le rôle de Cdk1 dans cette translocation reste quant à lui inconnu. De plus, nous avons montré que le complexe cycline B-Cdk1 entre dans le noyau avant que Gwl ne soit transportée dans le cytoplasme. Cdk1 pourrait donc activer Gwl et phosphoryler ses substrats nucléaires, à l’abri de PP2A-B55 qui est largement cytoplasmique. Gwl est ensuite exclue du noyau et relocalisée dans le cytoplasme afin d’induire l’inhibition de PP2A-B55. Cela permet de synchroniser les événements de phosphorylation se produisant dans le noyau et dans le cytoplasme. Fait intéressant, un mécanisme de régulation de la localisation de Gwl similaire à cela a été découvert chez l’humain et chez la levure, suggérant que ce mécanisme est conservé entre différentes espèces. / Reversible phosphorylation of proteins, triggered by cyclically activated kinases and phosphatases, is a key mechanism to control cell cycle progression. CyclinB-Cdk1 is a crucial kinase phosphorylating a large number of substrates to trigger mitotic entry. However, in metazoans, it is counteracted mainly by a Protein Phosphatase 2A carrying the B55 regulatory subunit (PP2A-B55). On the other hand, the Greatwall (Gwl) kinase is activated by CyclinB-Cdk1 upon mitotic entry and subsequently induces the inhibition of PP2A-B55 by Endos/Arpp19, thus promoting mitotic entry and maintenance. Nonetheless, the regulatory mechanisms of Gwl are less clear. We demonstrated that in Drosophila syncytial embryos, PP2A-B55 is negatively regulated by Gwl, but collaborates with Polo kinase to ensure both nucleus attachment of centrosome and faithful cell cycle progression. Later, we discovered that in Drosophila, the subcellular localization of Gwl changes dramatically throughout the cell cycle. Gwl is nuclear in interphase but suddenly becomes mostly cytoplasmic in prophase before nuclear envelope breakdown. Such translocation is important for Gwl’s function and requires the phosphorylation of Gwl by both Polo kinase and Cdk1 in the region containing two Nuclear Localization Signals (NLSs). Phosphorylation of Gwl by Polo likely promotes its association with14-3-3ε thereby promoting Gwl cytoplasmic retention, whereas Cdk1’s role in this translocation remains elusive. Moreover, I found that most cyclin B is imported into the nucleus before Gwl translocates to the cytoplasm. Therefore, Cdk1 can activate Gwl and phosphorylate its nuclear substrates without the perturbation of PP2A-B55 which is largely cytoplasmic. Subsequently, Gwl translocates into cytoplasm to mediate the inhibition of PP2A-B55 so that the phosphorylation events can be synchronized between the nucleus and the cytoplasm. Interestingly, similar spatial regulation of Gwl was also uncovered in mammal cells and in yeast, implying a conserved regulatory mechanism across species.
3

The roles of protein phosphatase 2A in nuclear envelope reformation after mitosis in drosophila

Mehsen, Haytham 12 1900 (has links)
Pendant le bris de l'enveloppe nucléaire, la kinase dépendante des cyclines liée à la cycline B (CDK1-cycline B) et d'autres kinases phosphorylent des protéines nucléaires conduisant au désassemblage des complexes de protéines de l'enveloppe nucléaire. Les protéines nucléaires phosphorylées sont ensuite déphosphorylées par un groupe de phosphatases en sortie mitotique. La protéine phosphatase 2A en complexe avec la sous-unité régulatrice B55 (PP2A-B55) est connue pour être la principale phosphatase à déphosphoryler les protéines critiques à la fin de la mitose. Cependant, les substrats nucléaires déphosphorylés par PP2A-B55 à la sortie mitotique sont peu connus. En utilisant des cellules de drosophile en culture, nous avons démontré que PP2A-B55 est nécessaire pour le recrutement de protéines de l'envelope nucléaire telles que BAF, la protéine de lamina nucléaire Lamin B et la nucléoporine Nup107. De plus, nous avons trouvé que les œufs de femelles des drosophiles hétérozygotes pour une mutation dans les gènes codant pour la Lamine B et Tws (B55 chez la drosophile) n’éclosent pas. Ces œufs présentent divers défauts au stade de la méiose et des divisions nucléaires de l’embryon syncytial. De plus, des tests in vitro et d'autres analyses biochimiques indiquent que PP2A-Tws se lie et déphosphoryle BAF. J'ai d'autres résultats qui suggèrent un rôle de la protéine Ankle2 dans la régulation du recrutement de BAF pour réassembler les noyaux à la sortie mitotique. Mes résultats suggèrent également que Ankle2 en complexe avec PP2A est responsable de la bonne progression mitotique. Mes résultats mettent en évidence l'utilité de la drosophile comme système modèle dans l'étude de différents aspects du cycle cellulaire. Ils démontrent également / During nuclear envelope breakdown, the cyclin-dependent kinase 1 bound to Cyclin B (CDK1-Cyclin B) and other kinases phosphorylate a number of nuclear proteins leading to the disassembly of nuclear envelope protein complexes. Phosphorylated nuclear proteins are then dephosphorylated by a group of phosphatases at mitotic exit. The protein phosphatase 2A in complex with the regulatory subunit B55 (PP2A-B55) is known to be the major phosphatase to dephosphorylate critical proteins at the end of mitosis. However, little was known about the nuclear substrates dephosphorylated by PP2A-B55 at mitotic exit. Using Drosophila cells in culture, we demonstrated that PP2A-B55 is required for the recruitment of nuclear envelope proteins such as BAF, the nuclear lamina protein Lamin B, and the nucleoporin Nup107. Also, eggs from Drosophila females heterozygous for a mutation in genes coding for Lamin B and Tws (B55 in Drosophila), didn’t hatch. These eggs showed various defects during the nuclear division stage and meiosis. Moreover, in vitro assays and other biochemical analyses indicate that PP2A-B55 binds and dephosphorylates BAF. I have other results that suggest a role of the protein Ankle2 in regulating BAF recruitment to reassembling nuclei at mitotic exit. My results also suggest that Ankle2 in complex with PP2A is responsible for the proper mitotic progression. Our results highlight the importance of Drosophila in investigating different aspects of the cell cycle. It also demonstrates a role of PP2A in the nuclear envelope reformation at the end of mitosis.

Page generated in 0.0219 seconds