Spelling suggestions: "subject:"cysteine proteinases"" "subject:"cysteine roteinases""
71 |
Cloning of the promoter regions of Trypanosoma brucei and Trypanosoma congolense cysteine protease genes.Dalasile, Thembile Lawrence. 23 December 2013 (has links)
Trypanosoma brucei and T. congolense are protozoan parasites that infect humans, domestic livestock and wildlife in Africa. These parasites undergo complex morphological
and biochemical changes, during the various stages of their life cycle. These changes
correlate with alterations in the levels of trypanosomal lysosomal cysteine proteases,
suggesting a role for transcriptional regulation of the cysteine protease in these parasites.
The mechanism of this regulation is not yet understood nor have the promoter regions of
the cloned trypanosome cysteine protease genes been investigated. This study involved an
attempt to clone the T. brucei and T. congolense DNA fragments containing the promoter
regions as the initial step in the investigation of the control elements of the cysteine protease gene.
Trypanosomes were isolated from infected rat blood employing a combination of the
methods of isopicnic isolation on Percoll gradients and DEAE-cellulose anion exchange
resin chromatography. Approximately 5 x 10⁹ viable trypanosome cells were isolated from
the infected rat blood and chromosomal DNA (approximately 500 μg) was extracted by
alkaline-lysis method. Trypanosome genomic libraries were initially constructed in
Eschericia coli HB101 employing the positive selection vector pEcoR251. The
Trypanosoma brucei pEcoR251 library contained 6 000 recombinants and the Trypanosoma
congolense library contained 15 000 recombinants. Plasmid DNA was then extracted from
pools of recombinants, employing the alkaline-lysis method, digested with EcoRl restriction
endonuclease and resolved by agarose gel electrophoresis. After Southern hybridisation,
the pEcoR251 libraries did not reveal any putative clones containing the fragment of interest
when probed with both an oligonucleotide probe and the PCR generated dsDNA probe.
Genomic libraries were then constructed in the phagemid pUC119. The T. brucei and T.
congolense genomic libraries contained 33 000 and 27 000 recombinants respectively.
Recombinants from the T. brucei and T. congolense libraries were pooled in lots of 400 and
300 respectively. Of the 80 T. brucei plasmid pools that were screened 30 pools contained
fragments that hybridised with the probe whilst 12 pools from the 90 T. congolense library
pools that were screened contained fragments that hybridised with the probe. Putative
clones identified appeared to contain inserts, ranging between two and seven kb in size. A
partial T. congolense library consisting of approximately 12 pools was screened by colony
hybridisation for identification of individual clones and 76 putative clones were identified.
After confirmation of these putative clones on a dot blot using a DIG-labelled dsDNA probe, a selection of 30 putative clones were subjected to Southern hybridisation using a
DIG-labelled DNA probe. Following Southern hybridisation 23 putative clones were
identified to contain DNA inserts of interest in the range of two to seven kb. Five clones,
designated pCPC1, pCPC2, pCPC3, pCPC4 and pCPC5 were then selected for further
restriction mapping. Clone pCPC4 contains a seven kb fragment of T. congolense genomic
DNA. A partial T. brucei library consisting of approximately 30 pools was screened by
colony hybridisation for the identification of individual putative clones. Although plasmid
pools containing putative clones were identified repeatedly by Southern blotting and
DNA/DNA hybridisation, it was not possible to identify individual putative clones following
transformation into E. coli MV1184 and colony hybridisation. / Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 1997.
|
72 |
Caracterização de proteinases envolvidas na geração de peptídeos antimicrobianos no intestino de Rhipicephalus (Boophilus) microplus. / CE. Characterization of proteinases involved in the generation of antimicrobial peptides in the gut of Rhipicephalus (Boophilus) microplus.Carlos Eduardo Silva da Cruz 04 February 2010 (has links)
Sabe-se que a hemoglobina é uma rica fonte de peptídeos antimicrobianos (hemocidinas). A primeira hemocidina derivada da hemoglobina bovina caracterizada em carrapatos foi o peptídeo Hb33-61, que é ativo contra bactérias gram-positivas e fungos. Acredita-se que tais hemocidinas sejam geradas proteoliticamente no intestino do carrapato. Neste trabalho nós caracterizamos bioquimicamente uma catepsina D, designada BmAP. A análise da expressão gênica por qPCR mostrou que ela é expressa predominantemente no intestino. Através de LC-MS/MS, determinamos a especificidade de clivagem da BmAP utilizando Hb bovina, e verificamos que resíduos hidrofóbicos foram preferencialmente clivados nos subsítios P1 e P1. Também investigamos a especificidade de clivagem da catepsina L intestinal BmCL1, utilizando uma biblioteca combinatória de tetrapeptídeos e através de hemoglobinólise in vitro. A BmCL1 preferiu resíduos alifáticos no P2 e polares no P1 e P1. Além disso, hidrolisou a cadeia da Hb bovina entre A63/A64, gerando peptídeos com estrutura primária similar ao Hb 33-61. A hemoglobinólise com a BmAP e/ou BmCL1 resultou na formação de algumas hemocidinas, corroborando a hipótese do seu envolvimento na geração endógena de peptídeos antimicrobianos. / It is known that hemoglobin is a rich source of antimicrobial peptides (hemocidins). The first hemoglobin-derived hemocidin characterized in ticks was the peptide Hb33-61, which is active against Gram-positive bacteria and fungi. It is believed that hemocidins are endogenously generated in the tick gut. In this work we biochemically characterized a cathepsin D, designated BmAP. Expression analysis by qRT-PCR showed that it is expressed predominantly in the gut. Through LC-MS/MS, we determined the cleavage specificity of BmAP using bovine hemoglobin, and we verified that hydrophobic residues were preferentially cleaved at the subsites P1 and P1. We also investigated the cleavage specificity of the intestinal cathepsin L BmCL1, using a positional scanning synthetic combinatorial library and through in vitro hemoglobinolysis. BmCL1 preferred aliphatic residues at P2 and polar residues at P1 and P1. Also, it hydrolysed the subunit of bovine hemoglobin at A63/A64, generating peptides with a primary structure similar to Hb 33-61. Hemoglobinolysis with BmAP and/or BmCL1 resulted in the formation of some hemocidins, corroborating the hypothesis that these proteinases are involved in the endogenous generation of antimicrobial peptides
|
73 |
The non-apoptotic role of caspase-3 activation and its modulation in erythroid differentiation of TF-1 cells. / CUHK electronic theses & dissertations collectionJanuary 2006 (has links)
Apart from CAD, the transient liberation of AIF during day 6 of TF-1 differentiation could pose another threat to the genomic DNA in cells. We have demonstrated the absence of AIF in the nucleus of TF-1 cells despite its release from the mitochondria by using confocal studies. Moreover, the expression of heat shock protein 70 kDa (Hsp70), a well-known antagonist of AIF, was found to be temporarily increased at day 6. Taken together, our results implied a plausible retention of AIF in the cytoplasm by Hsp70. Although Hsp70 is commonly utilized by many cancer cells to counteract AIF and avoid DNA fragmentation, we are the first to demonstrate its role in suppressing AIF during normal erythroid maturation. / As a whole, we have illustrated that the activated caspase-3, mediated most likely by the mitochondrial pathway, is an essential component in the differentiation of TF-1 cells. Its activation was nevertheless not coupled with DNA fragmentation due to some protective mechanisms such as CAD downregulation, Hsp70 upregulation and overexpression of Bcl-XL. Our study therefore provides some insights in the understanding of the relationship between human erythropoiesis and apoptosis and a better understanding in this regard will undoubtedly facilitate the development of new drugs in the treatment of different hematopoietic diseases. / Caspases play a central role in apoptosis. Their activations during the process are accounted for different biochemical and morphological changes in apoptotic cells. Yet in recent years, increasing studies had shown that caspases were also involved in some non-apoptotic cellular events, including T and B-lymphocytes activation, as well as the terminal differentiation of lens cells, megakaryocytes and erythrocytes. / In order to find out other unknown cellular mechanisms in erythropoiesis, mRNA differential display was employed to compare the gene expression pattern of TF-1 cells at different stages of differentiation. Several differentially expressed genes were identified and subsequently confirmed by RT PCR. These genes include formin binding protein 3, destrin and T-complex protein-1 (TCP-1). Their involvement in erythroid differentiation was still not clear at the moment but would be investigated in the near future. Furthermore, aiming at identifying the interacting proteins or inhibitors of caspase-3 in the system, a pull down assay was developed by means of the bacterial expression of a recombinant human caspase-3 mutant protein. With the mutation in the active site, the binding of our recombinant caspase-3 mutant with two known partners ICAD and BIRII (Baculovirus Inhibitor of apoptosis protein Repeat II) domain has been demonstrated. We hope in the near future that it can be employed to fish out some novel caspase-3 substrates from the differentiating TF-1 cell lysate. / In the present study, the participation of caspase in in vitro erythropoiesis was investigated using a human erythroleukemia cell line TF-1. Erythropoietin (EPO) induced erythroid maturation of TF-1 as indicated by the expression of erythroid-lineage markers like glycophorin A (GPA), transferrin receptors (CD71) and synthesis of hemoglobin (Hb). Activation of caspase-3 was observed from day 6 to day 12 during TF-1 differentiation after EPO treatment. With the administration of caspase-3 specific inhibitor, expressions of GPA and CD71 were partially blocked, suggesting that caspase-3 activation is essential in erythropoiesis in our TF-1 model. / Possible involvement of the intrinsic and extrinsic apoptotic pathways was studied by investigating respectively the activation of pro-caspase-9 and -8. It was found that caspase-9, but not -8, was activated at the corresponding time point when caspase-3 was activated. Besides, a transient mitochondrial depolarization coupled with the release of cytochrome c and apoptosis inducing factor (AIF) were detected on day 6, strongly implying a role of mitochondria in triggering the activation of executioner caspase-3. On the other hand, GPA and CD71 expressions were blocked by the application of mitochondrial depolarization inhibitor cyclosporin A (CyA). Also, the recovery of mitochondrial membrane potential was found to be correlated with an overexpression of Bcl-XL at a late stage of TF-1 differentiation, and the role of Bcl-XL was subsequently manifested further by a significant retardation of erythroid differentiation in the siRNA Bcl-XL knocked down TF-1 cells. / The exact role of caspase-3 in erythroid differentiation is far from clear at this moment. Yet, its regulation in the process is equally intriguing. On the course of TF-1 maturation, activated caspase-3 was able to cleave and de-localize the Inhibitor of Caspase-activated DNase (ICAD) from the nucleus, but at the same time DNA fragmentation was not detected by TUNEL assay nor agarose electrophoresis. Furthermore, protection against DNA fragmentation was observed in the EPO-treated TF-1 cells when challenged with a potent apoptotic inducer staurosporine (STS). These observations are in contrast to our understanding that DNA is fragmented by CAD (Caspase-activated DNase) when ICAD in the ICAD-CAD complex is cleaved by caspase-3. For these apparently contradictory observations, we demonstrated that downregulation of CAD occurred at the mRNA and protein levels during the erythroid differentiation in TF-1. This provides a cell rescuing mechanism in non-apoptotic cells with activated caspases. / Lui Chun Kin Julian. / "September 2006." / Adviser: Siu Kai Kong. / Source: Dissertation Abstracts International, Volume: 68-03, Section: B, page: 1620. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (p. 239-253). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
|
74 |
Étude du processus de rupture de l'interaction symbiotique medicago truncatula / sinorhizobium meliloti : rôle de cystéine protéases / Characterization of nodule senescence process in medicago truncatula / sinorhizobium meliloti symbiosis : role of cysteine proteinasesPierre, Olivier 04 October 2013 (has links)
Medicago truncatula est une Légumineuse établissant une interaction symbiotique avec une bactérie tellurique de la famille des Rhizobiacées, Sinorhizobium meliloti. Cette interaction induit l’organogénèse racinaire d’un nouvel organe, la nodosité dans laquelle s’établit un microenvironnement propice à la différenciation de S. meliloti en bactéroïde fixateur du diazote atmosphérique. Ce dernier réduit ainsi le N2 atmosphérique en ammonium, assimilé ensuite par la plante hôte. Cette réduction étant très endergonique M. truncatula fournit aux bactéroïdes des substrats carbonés issus de la photosynthèse. Cependant, cette interaction n’est pas pérenne, du fait de la mise en place d’un processus de sénescence ; processus conduisant à la lyse des bactéroïdes et des cellules hôtes végétales. Cependant, à l’heure actuelle, ce processus de rupture symbiotique reste largement méconnu. Afin de mieux caractériser ce processus de sénescence, nous avons développé de nouveaux outils cytologiques permettant par microscopie confocale de suivre in vivo la viabilité, mais également le fonctionnement des bactéroïdes au sein de la cellule hôte végétale. Ces nouvelles approches cytologiques pourraient ainsi offrir de nouvelles perspectives pour une caractérisation plus précise du déroulement du processus de sénescence nodositaire. Dans le cadre de ce travail de thèse, nous avons également cherché à déterminer l’implication de deux cystéines protéases dans la mise en place du processus de sénescence nodositaire. Une des caractéristiques de ce processus de sénescence est une hausse de l’activité protéolytique, notamment des activités cystéine protéases. L’analyse transcriptomique par cDNA-AFLP du processus de sénescence nodositaire (Van de Velde et al. 2006) a pu mettre en évidence 508 gènes différentiellement exprimés dont deux cystéines protéases, MtCP6 et MtVPE. L’analyse spatio-temporelle de MtCP6 et MtVPE, par fusion transcriptionnelle avec le gène rapporteur GUS, a permis de mettre en évidence l’induction de ces deux gènes lors du processus de sénescence nodositaire aussi bien développementale qu’induit par un traitement abiotique ou lors d’une interaction symbiotique non efficace. De plus, nous avons pu démontrer, par génétique inverse, que la diminution de l’expression de ces deux protéases retarde la mise en place du processus de sénescence, alors que leur expression précoce conduit à la promouvoir. Enfin, l’étude par microscopie confocale de la localisation subcellulaire de ces protéases par fusion traductionnelle avec la GFP, démontre leur adressage aux bactéroïdes. Nos données tendent donc à démontrer le rôle clef de MtCP6 et de MtVPE dans le processus de sénescence nodositaire, où ces protéases pourraient participer directement au déclenchement d’une dégradation des bactéroïdes. / Medicago truncatula is a leguminous plant establishing a symbiotic interaction with the bacteria Sinorhizobium meliloti. This symbiosis leads to the de novo development of root nodules involved in biological nitrogen fixation. However, this symbiotic interaction is time limited and an early senescence appears in mature nodule entailing the formation of a senescence zone (zone IV). This degradation process occurs earlier in comparison to senescence of the whole plant. During nodule developmental senescence of plant host cells, a gradual degradation process induces a loss of vacuole and peribacteroid membrane (PBM). But this nodule degradation process still remains to be unravelled. To increase our understanding of the nodule senescence process, we developed new cytologic tools allowing an in vivo assessment of the viability and functioning of bacteroids within plant host cells. Therefore, these new tools provide a new insight of the nodule senescence process which may help for a finer characterization of the nodule senescence. In the M. truncatula model, a previous cDNA-AFLP analysis enlightens an upregulation of several cysteine proteinases during the transition from nitrogen fixing nodule to a senescent one; including an early expression of an SPG31-like peptidase known to be involved in leaf senescence (MtCP6) and a Vacuolar Processing Enzyme described as a plant caspase-like protein (MtVPE) involved in mechanisms similar to hypersensitive response in A. thaliana. In planta spatiotemporal analysis of the expression of these two cysteine proteinases using promoter:reporter gene GUS confirmed their expression during natural senescence at the junction between the nitrogen fixing zone (zone III) and the senescence zone (zone IV). Therefore, to acquire a better insight into the role of these cysteine proteases during the senescence program, we knocked down by RNAi the expression of each gene specifically at the interzone III-IV. Depletion of these transcripts induced a drastic increased of N2 fixation and nodule size. Conversely, overexpression of both genes in the zone III of nodule leads to an extension of the senescence zone. Confocal microscopy images of protein:GFP fusions showed that both proteinases are addressed to bacteroids within plant host cells. Our data revealed that MtCP6 and MtVPE are key players of the nodule senescence process and may be directly involved in symbiosome degradation.
|
75 |
Visible Light Cured Thiol-vinyl Hydrogels with Tunable Gelation and DegradationHao, Yiting January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Hydrogels prepared from photopolymerization have been widely used in many biomedical applications. Ultraviolet (200-400 nm) or visible (400-800 nm) light can interact with light-sensitive compounds called photoinitiators to form radical species that trigger photopolylmerization. Since UV light has potential to cause cell damage, visible light-mediated photopolymerization has attracted much attention. The conventional method to fabricate hydrogels under visible light exposure requires usage of co-initiator triethanolamine (TEA) at high concentration (∼200 mM), which reduces cell viability. Therefore, the first objective of this thesis was to develop a new method to form poly(ethylene glycol)-diacrylate (PEGDA) hydrogel without using TEA. Specifically, thiol-containing molecules (e.g. dithiothreitol or cysteine-containing peptides) were used to replace TEA as both co-initiator and crosslinker. Co-monomer 1-vinyl-2-pyrrolidinone (NVP) was used to accelerate gelation kinetics. The gelation rate could be tuned by changing the concentration of eosinY or NVP. Variation of thiol concentration affected degradation rate of hydrogels. Many bioactive motifs have been immobilized into hydrogels to enhance cell attachment and adhesion in previous studies. In this thesis, pendant peptide RGDS was incorporated via two methods with high incorporation efficiency. The stiffness of hydrogels decreased when incorporating RGDS. The second objective of this thesis was to fabricate hydrogels using poly(ethylene glycol)-tetra-acrylate (PEG4A) macromer instead of PEGDA via the same step-and-chain-growth mixed mode mechanism. Formation of hydrogels using PEGDA in this thesis required high concentration of macromer (∼10 wt.%). Since PEG4A had two more functional acrylate groups than PEGDA, hydrogels could be fabricated using lower concentration of PEG4A (∼4 wt.%). The effects of NVP concentration and thiol content on hydrogel properties were similar to those on PEGDA hydrogels. In addition, the functionality and chemistry of thiol could also affect hydrogel properties.
|
Page generated in 0.0711 seconds