• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of MtNOOT and PsCOCH genes in Medicago truncatula and Pisum sativum : two versatile regulators of plant development recruited for symbiotic nodule identity / Caractérisation des gènes MtNOOT et PsCOCH chez Medicago truncatula et Pisum sativum : deux régulateurs polyvalents du développement végétal recrutés pour l’identité de la nodosité symbiotique

Couzigou, Jean-malo 15 December 2011 (has links)
Les plantes de la famille des légumineuses ont la particularité d’héberger intracellulairement des bactéries du sol communément appelées rhizobia. Cette interaction symbiotique se déroule au sein de la nodosité, un organe formé de-novo au niveau racinaire. L’activité nitrogénase bactérienne y permet la réduction de l’azote atmosphérique en NH3 assimilable par la plante. Si les mécanismes moléculaires gouvernant la reconnaissance entre les deux partenaires, l’infection intracellulaire et l’organogénèse des nodosités ont été particulièrement bien décrits au cours des dernières décennies ; peu d’informations sont quant à elles disponibles sur l’origine de ce programme morphogénétique nouveau chez les Angiospermes. Les nodosités des deux légumineuses modèles Medicago truncatula et Pisum sativum sont qualifiées d’indéterminées en raison de la persistance d’un méristème en position apicale. Les nodosités des mutants noot (nodule-root) chez M. truncatula et coch (cochleata) chez le pois développent des racines ectopiques à partir des tissus vasculaires des nodosités, montrant ainsi que les nodosités et racines sont plus apparentées que leur simple comparaison anatomique ne pouvait le suggérer. En outre, l‘activité mérsitématique des nodosités est fortement perturbée chez ces deux mutants qui présentent des nodosités multilobées et élargies. Nous avons montré que les gènes MtNOOT et PsCOCHLEATA étaient orthologues aux gènes AtBLADE-ON-PETIOLE1 et 2 qui codent deux activateurs transcriptionels redondants et cruciaux pour la régulation de nombreux processus développementaux chez Arabidopsis thaliana. En raison de la forte conservation des fonctions biologiques des protéines NOOT, BOPs et COCH, notamment pour la régulation de la morphologie foliaire et florale, de l’architecture de l’inflorescence et de la formation des zones d’abscission, nous proposons que ces fonctions représentent les fonctions ancestrales de la famille des gènes NBCL (NOOT BOP COCH LIKE). L’étude de déterminants hormonaux et génétiques du méristème racinaire dans les nodosités sauvages et mutantes noot ainsi que la caractérisation de l’homéose nodule/racine nous ont permis de dégager des parallèles importants entre les tissus périphériques de la nodosité et ceux de la racine. Nous proposons donc un modèle de développement des tissus vasculaires de la nodosité par co-option du programme racinaire dont la répression est en partie assurée par NOOT. / Legume plants are able to house intracellularly soil bacteria collectively called rhizobia. This symbiotic process takes place in a new organ generally formed on the host roots, the nodule. This interaction allows atmospheric nitrogen fixation to the benefit of the plant by using the bacterial nitrogenase activity. Despite an exhaustive description of molecular determinants of this interaction allowing partners recognition, intracellular accommodation and early nodule organogenesis, less is known about cell lineage and identity of the nodule morphogenetic pathway which is thought to represent a recent acquisition during Angiosperms evolution. Nodules from model legumes such as Medicago truncatula or Pisum sativum are described as indeterminate because of the persistence of a distal meristem. The noot (nodule-root) and coch (coch) mutants, in M. truncatula and P. sativum respectively, develop ectopic roots from the nodule vasculature, suggesting that roots and symbiotic nodules are more closely related than previously admitted based on their anatomical comparison. Moreover, the meristematic activity is strongly modified in noot and coch nodules that harbor numerous and enlarged lobes. We showed that NOOT and COCH are orthologs to AtBLADE-ON-PETIOLE1 and 2 redundant transcriptional activators that represent key regulators of versatile plant developmental processes in Arabidopsis thaliana. Because of the conservation of biological functions controlled by NOOT, BOPs and COCH proteins, in particular the regulation of leaf and floral morphologies, abscission zones formation and inflorescence architecture, we proposed that such functions are inherited from a NBCLs (NOOT BOP COCH LIKE) ancestral gene. Our studies of hormonal and genetic determinants of the root meristem in noot and wild-type nodules as well as the characterization of nodule-to-root homeosis have highlighted important parallels between nodule peripheral tissues and roots. We thus propose a model of nodule vascular unit maintenance by the NOOT-dependent repression of a co-opted root morphogenetic program.
2

Étude du processus de rupture de l'interaction symbiotique medicago truncatula / sinorhizobium meliloti : rôle de cystéine protéases

Pierre, Olivier 04 October 2013 (has links) (PDF)
Medicago truncatula est une Légumineuse établissant une interaction symbiotique avec une bactérie tellurique de la famille des Rhizobiacées, Sinorhizobium meliloti. Cette interaction induit l'organogénèse racinaire d'un nouvel organe, la nodosité dans laquelle s'établit un microenvironnement propice à la différenciation de S. meliloti en bactéroïde fixateur du diazote atmosphérique. Ce dernier réduit ainsi le N2 atmosphérique en ammonium, assimilé ensuite par la plante hôte. Cette réduction étant très endergonique M. truncatula fournit aux bactéroïdes des substrats carbonés issus de la photosynthèse. Cependant, cette interaction n'est pas pérenne, du fait de la mise en place d'un processus de sénescence ; processus conduisant à la lyse des bactéroïdes et des cellules hôtes végétales. Cependant, à l'heure actuelle, ce processus de rupture symbiotique reste largement méconnu. Afin de mieux caractériser ce processus de sénescence, nous avons développé de nouveaux outils cytologiques permettant par microscopie confocale de suivre in vivo la viabilité, mais également le fonctionnement des bactéroïdes au sein de la cellule hôte végétale. Ces nouvelles approches cytologiques pourraient ainsi offrir de nouvelles perspectives pour une caractérisation plus précise du déroulement du processus de sénescence nodositaire. Dans le cadre de ce travail de thèse, nous avons également cherché à déterminer l'implication de deux cystéines protéases dans la mise en place du processus de sénescence nodositaire. Une des caractéristiques de ce processus de sénescence est une hausse de l'activité protéolytique, notamment des activités cystéine protéases. L'analyse transcriptomique par cDNA-AFLP du processus de sénescence nodositaire (Van de Velde et al. 2006) a pu mettre en évidence 508 gènes différentiellement exprimés dont deux cystéines protéases, MtCP6 et MtVPE. L'analyse spatio-temporelle de MtCP6 et MtVPE, par fusion transcriptionnelle avec le gène rapporteur GUS, a permis de mettre en évidence l'induction de ces deux gènes lors du processus de sénescence nodositaire aussi bien développementale qu'induit par un traitement abiotique ou lors d'une interaction symbiotique non efficace. De plus, nous avons pu démontrer, par génétique inverse, que la diminution de l'expression de ces deux protéases retarde la mise en place du processus de sénescence, alors que leur expression précoce conduit à la promouvoir. Enfin, l'étude par microscopie confocale de la localisation subcellulaire de ces protéases par fusion traductionnelle avec la GFP, démontre leur adressage aux bactéroïdes. Nos données tendent donc à démontrer le rôle clef de MtCP6 et de MtVPE dans le processus de sénescence nodositaire, où ces protéases pourraient participer directement au déclenchement d'une dégradation des bactéroïdes.
3

Étude du processus de rupture de l'interaction symbiotique medicago truncatula / sinorhizobium meliloti : rôle de cystéine protéases / Characterization of nodule senescence process in medicago truncatula / sinorhizobium meliloti symbiosis : role of cysteine proteinases

Pierre, Olivier 04 October 2013 (has links)
Medicago truncatula est une Légumineuse établissant une interaction symbiotique avec une bactérie tellurique de la famille des Rhizobiacées, Sinorhizobium meliloti. Cette interaction induit l’organogénèse racinaire d’un nouvel organe, la nodosité dans laquelle s’établit un microenvironnement propice à la différenciation de S. meliloti en bactéroïde fixateur du diazote atmosphérique. Ce dernier réduit ainsi le N2 atmosphérique en ammonium, assimilé ensuite par la plante hôte. Cette réduction étant très endergonique M. truncatula fournit aux bactéroïdes des substrats carbonés issus de la photosynthèse. Cependant, cette interaction n’est pas pérenne, du fait de la mise en place d’un processus de sénescence ; processus conduisant à la lyse des bactéroïdes et des cellules hôtes végétales. Cependant, à l’heure actuelle, ce processus de rupture symbiotique reste largement méconnu. Afin de mieux caractériser ce processus de sénescence, nous avons développé de nouveaux outils cytologiques permettant par microscopie confocale de suivre in vivo la viabilité, mais également le fonctionnement des bactéroïdes au sein de la cellule hôte végétale. Ces nouvelles approches cytologiques pourraient ainsi offrir de nouvelles perspectives pour une caractérisation plus précise du déroulement du processus de sénescence nodositaire. Dans le cadre de ce travail de thèse, nous avons également cherché à déterminer l’implication de deux cystéines protéases dans la mise en place du processus de sénescence nodositaire. Une des caractéristiques de ce processus de sénescence est une hausse de l’activité protéolytique, notamment des activités cystéine protéases. L’analyse transcriptomique par cDNA-AFLP du processus de sénescence nodositaire (Van de Velde et al. 2006) a pu mettre en évidence 508 gènes différentiellement exprimés dont deux cystéines protéases, MtCP6 et MtVPE. L’analyse spatio-temporelle de MtCP6 et MtVPE, par fusion transcriptionnelle avec le gène rapporteur GUS, a permis de mettre en évidence l’induction de ces deux gènes lors du processus de sénescence nodositaire aussi bien développementale qu’induit par un traitement abiotique ou lors d’une interaction symbiotique non efficace. De plus, nous avons pu démontrer, par génétique inverse, que la diminution de l’expression de ces deux protéases retarde la mise en place du processus de sénescence, alors que leur expression précoce conduit à la promouvoir. Enfin, l’étude par microscopie confocale de la localisation subcellulaire de ces protéases par fusion traductionnelle avec la GFP, démontre leur adressage aux bactéroïdes. Nos données tendent donc à démontrer le rôle clef de MtCP6 et de MtVPE dans le processus de sénescence nodositaire, où ces protéases pourraient participer directement au déclenchement d’une dégradation des bactéroïdes. / Medicago truncatula is a leguminous plant establishing a symbiotic interaction with the bacteria Sinorhizobium meliloti. This symbiosis leads to the de novo development of root nodules involved in biological nitrogen fixation. However, this symbiotic interaction is time limited and an early senescence appears in mature nodule entailing the formation of a senescence zone (zone IV). This degradation process occurs earlier in comparison to senescence of the whole plant. During nodule developmental senescence of plant host cells, a gradual degradation process induces a loss of vacuole and peribacteroid membrane (PBM). But this nodule degradation process still remains to be unravelled. To increase our understanding of the nodule senescence process, we developed new cytologic tools allowing an in vivo assessment of the viability and functioning of bacteroids within plant host cells. Therefore, these new tools provide a new insight of the nodule senescence process which may help for a finer characterization of the nodule senescence. In the M. truncatula model, a previous cDNA-AFLP analysis enlightens an upregulation of several cysteine proteinases during the transition from nitrogen fixing nodule to a senescent one; including an early expression of an SPG31-like peptidase known to be involved in leaf senescence (MtCP6) and a Vacuolar Processing Enzyme described as a plant caspase-like protein (MtVPE) involved in mechanisms similar to hypersensitive response in A. thaliana. In planta spatiotemporal analysis of the expression of these two cysteine proteinases using promoter:reporter gene GUS confirmed their expression during natural senescence at the junction between the nitrogen fixing zone (zone III) and the senescence zone (zone IV). Therefore, to acquire a better insight into the role of these cysteine proteases during the senescence program, we knocked down by RNAi the expression of each gene specifically at the interzone III-IV. Depletion of these transcripts induced a drastic increased of N2 fixation and nodule size. Conversely, overexpression of both genes in the zone III of nodule leads to an extension of the senescence zone. Confocal microscopy images of protein:GFP fusions showed that both proteinases are addressed to bacteroids within plant host cells. Our data revealed that MtCP6 and MtVPE are key players of the nodule senescence process and may be directly involved in symbiosome degradation.
4

The roles of the NOOT-BOP-COCH-LIKE genes in the symbiotic organ identity and in plant development / Les rôles des gènes NOOT-BOP-COCH-LIKE dans l’identité de l’organe symbiotique et le développement des plantes.

Magne, Kévin 11 December 2017 (has links)
L’association symbiotique entre les légumineuses et les rhizobia aboutit à la formation de la nodosité fixatrice d’azote. Cet organe symbiotique généré de-novo permet l’hébergement intracellulaire des rhizobia qui, grâce à leurs activités nitrogénase,réduisent l’azote atmosphérique en ammonium, une forme de l’azote directement assimilable par la plante hôte.Les mécanismes moléculaires sous-jacents à la reconnaissance entre les deux partenaires symbiotiques, au processus d’infection et à l’organogénèse de la nodosité sont bien décrits, cependantl’établissement et la maintenance de l’identité de cet unique organe souterrain restent incompris.Les gènes NODULE-ROOT de Medicago truncatula, BLADEON-PETIOLE d’Arabidopsis thaliana et COCHLEATA de Pisumsativum sont membres du clade spécifique très conservé NOOTBOP-COCH-LIKE1 (NBCL1) qui fait partie de la famille des gènesNON-EXPRESSOR OF PATHOGENESIS RELATED PROTEIN1-LIKE. Chez les légumineuses, les membres de ce clade NBCL1 sont connus comme étant des régulateurs clés de l’identité de l’organe symbiotique.Mon travail de thèse a eu pour but d’améliorer la compréhension des rôles des gènes NBCL1, à la fois chez des espèces formant des nodosités indéterminées et déterminées, ainsi que de découvrir de nouveaux acteurs moléculaires impliqués dans l’identité de la nodosité dont la régulation est dépendante des gènesNBCL1, essentiellement par l’utilisation de mutants TILLING, Tnt1et LORE1 originaux chez trois espèces de légumineuses: la luzerne tronquée, le petit pois et le lotier.Ce travail rapporte essentiellement l’identification et la caractérisation de nouveaux mutants affectés dans des gènes qui font partie d’un second sous-clade NBCL2 spécifique des légumineuses.Nous avons révélé que les membres de ce sous-clade spécifique des légumineuses NBCL2 jouent d’importants rôles dans le développement de la nodosité, dans l’établissement et la maintenance de l’identité de la nodosité et par conséquence dans le succès et l’efficacité de l’association symbiotique.Ce travail suggère aussi qu’au cours de l’évolution, le programme de développement de la nodosité a recruté des mécanismes de régulations préexistants afin de réguler le développement de la nodosité et son identité, tel que le module de régulation impliquant des interactions entre des protéines NBCL et des facteurs de transcriptions basic leucine zipper de type TGACG. Nous avons identifié le facteur de transcription MtPERIANTHIA-LIKE, comme un premier partenaire protéique interagissant avec des protéines NBLC dans un contexte de nodosité symbiotique. Les gènes NBCL sont aussi impliqués dans les réseaux de régulations qui contrôlent le développement et le déterminisme de nombreux organes végétatifs et reproductifs aériens et sont également impliqués dans la capacité d’abscission de ces organes.Finalement, ce travail thèse a eu pour objectif d’explorer les rôles de ces gènes NBCL très conservés, dans le développement de la graminée non-domestiquée, Brachypodium distachyon. / The symbiotic interaction between legumes andrhizobia results in the formation of a symbiotic nitrogen fixingnodule.This de-novo generated symbiotic organ allows the intracellularaccommodation of the rhizobia which reduces through theirnitrogenase activity the atmospheric nitrogen in ammonium, anitrogen form usable by the host plant.The molecular mechanisms underlying the symbiotic partnersrecognition, the infection process and the nodule organogenesis arewell described, however the identity establishment and maintenanceof this unique underground organ remain mis-understood.The Medicago truncatula NODULE-ROOT, the Arabidopsisthaliana BLADE-ON-PETIOLE and the Pisum sativumCOCHLEATA genes are members of a highly conserved NOOTBOP-COCH-LIKE1 (NBCL1) specific clade that belongs to theNON-EXPRESSOR OF PATHOGENESIS RELATED PROTEIN1-LIKE gene family. In legumes, the members of this NBCL1 cladeare known as key regulators of the symbiotic nodule identity.The present thesis work aims to better understand the roles of theNBCL1 genes, in both indeterminate and determinate nodule formingspecies and to discover new molecular actors involved in theNBCL1-dependent regulation of the nodule identity essentially usingnovel TILLING, Tnt1 and LORE1 insertional mutants in three legumespecies, Medicago, Pisum and Lotus.This thesis work has allowed the identification and thecharacterization of new mutants for genes belonging to a secondarylegume-specific NBCL2 sub-clade. We revealed that the members ofthis legume-specific NBCL2 sub-clade play important roles in noduledevelopment, identity establishment and maintenance, andconsequently in the success and in the efficiency of the symbioticassociation.This thesis work also shows that during evolution, the noduledevelopmental program has recruited pre-existing regulatorymechanisms for the nodule development and identity, such as theregulatory module involving interactions between NBCL proteins andTGACG type basic leucine zipper transcription factors. We identifiedthe transcription factor, MtPERIANTHIA-LIKE, as a first interactingpartner of NBCL proteins in a context of root nodule symbiosis.NBCL genes are also involved in the regulatory networks thatcontrol the development and the determinacy of many abovegroundvegetative and reproductive organs and were also shown as involvedin their abscission ability.In this thesis we also explored the roles of these highly conservedNBCL genes in the development of the non-domesticated grass,Brachypodium distachyon.

Page generated in 0.0222 seconds