Spelling suggestions: "subject:"cytochrome C coxidase"" "subject:"cytochrome C aoxidase""
41 |
Mitochondriální cytochrom c oxidasa: inhibice kyanidem a vliv defektu asemblačního faktoru Surf1 / Mitochondrial cytochrome c oxidase: cyanide inhibition and role of assembly factor Surf1 defectNůsková, Hana January 2010 (has links)
The activity of mitochondrial cytochrome c oxidase (COX) can be affected by either exogenous or endogenous factors. The most efficient and in the environment abundant compound that inhibits COX is cyanide. The very frequent cause of COX deficiency in humans is represented by a defect in the SURF1 gene. The mechanism of cyanide inhibitory effect on COX as well as the conditions for its recovery are not yet fully explained. Three parameters of COX function, namely the transport of electrons (oxygen consumption), the transport of protons (mitochondrial membrane potential, m) and the enzyme affinity to oxygen (p50 value), were studied with regard to the inhibition by KCN and its reversal by pyruvate. The function of COX was analysed in intact isolated rat liver mitochondria, both within the respiratory chain and as a sole enzyme, using succinate or an artificial electron donor ascorbate + TMPD as a substrate. 250 M KCN completely inhibited both electron- and proton-transporting function of COX, and this inhibition was reversible as proved with washing of mitochondria. The addition of 60 mM pyruvate induced the maximal recovery of both parameters to 60 - 80 % of original values. Using KCN in the low concentration range up to 5 M, a profound, 30-fold decrease of COX affinity to oxygen was observed....
|
42 |
Experimental studies of proton translocation reactions in biological systems : Electrogenic events in heme-copper oxidasesLepp, Håkan January 2008 (has links)
<p>Terminal heme-copper oxidases (HCuOs) are transmembrane proteins that catalyze the final step in the respiratory chain - the reduction of O<sub>2</sub> to H<sub>2</sub>O, coupled to energy conservation by generation of an electrochemical proton gradient. The most extensively investigated of the HCuOs are the <i>aa</i><sub>3</sub>-type oxidases, to which cytochrome <i>c</i> oxidase (Cyt<i>c</i>O) belongs, which uses energy released in the O<sub>2</sub>-reduction for proton pumping. The bacterial nitric oxide reductases (NORs) have been identified as divergent members of the HCuO-superfamily and are involved in the denitrification pathway where they catalyze the reduction of NO to NO<sub>2</sub>. Although as exergonic as O<sub>2</sub>-reduction, this reaction is completely non-electrogenic. Among the traditional HCuOs, the <i>cbb</i><sub>3</sub>-type oxidases are the closest relatives to the NORs and as such provide a link between the <i>aa</i><sub>3</sub> oxidases and the NORs. The <i>cbb</i><sub>3</sub> oxidases have been shown to pump protons with nearly the same efficiency as the <i>aa</i><sub>3</sub> oxidases, despite low sequence similarity.</p><p>This thesis is focused on measurements of membrane potential generating reactions during catalysis in the Cyt<i>c</i>O and the <i>cbb</i><sub>3</sub> oxidase from <i>Rhodobacter sphaeroides</i>, and the NOR from <i>Paracoccus</i> <i>denitrificans</i>, using a time resolved electrometric technique. The pH dependence of the membrane potential generation in Cyt<i>c</i>O showed that only one proton is taken up and that no protons are pumped, at high pH. An additional kinetic phase was also detected at high pH that presumably originates to from charge-transfer within the K-pathway. Possible reasons for uncoupling, and the extent of charge-transfer, were studied using structural variants of Cyt<i>c</i>O. The measurements established that electrons and protons are taken up from the same side of the membrane in NOR. In addition, the directionality for proton uptake in <i>cbb</i><sub>3</sub> oxidase appeared to be dependent on the choice of substrate while proton pumping was indicated to occur only during O<sub>2</sub>-reduction.</p>
|
43 |
Experimental studies of proton translocation reactions in biological systems : Electrogenic events in heme-copper oxidasesLepp, Håkan January 2008 (has links)
Terminal heme-copper oxidases (HCuOs) are transmembrane proteins that catalyze the final step in the respiratory chain - the reduction of O2 to H2O, coupled to energy conservation by generation of an electrochemical proton gradient. The most extensively investigated of the HCuOs are the aa3-type oxidases, to which cytochrome c oxidase (CytcO) belongs, which uses energy released in the O2-reduction for proton pumping. The bacterial nitric oxide reductases (NORs) have been identified as divergent members of the HCuO-superfamily and are involved in the denitrification pathway where they catalyze the reduction of NO to NO2. Although as exergonic as O2-reduction, this reaction is completely non-electrogenic. Among the traditional HCuOs, the cbb3-type oxidases are the closest relatives to the NORs and as such provide a link between the aa3 oxidases and the NORs. The cbb3 oxidases have been shown to pump protons with nearly the same efficiency as the aa3 oxidases, despite low sequence similarity. This thesis is focused on measurements of membrane potential generating reactions during catalysis in the CytcO and the cbb3 oxidase from Rhodobacter sphaeroides, and the NOR from Paracoccus denitrificans, using a time resolved electrometric technique. The pH dependence of the membrane potential generation in CytcO showed that only one proton is taken up and that no protons are pumped, at high pH. An additional kinetic phase was also detected at high pH that presumably originates to from charge-transfer within the K-pathway. Possible reasons for uncoupling, and the extent of charge-transfer, were studied using structural variants of CytcO. The measurements established that electrons and protons are taken up from the same side of the membrane in NOR. In addition, the directionality for proton uptake in cbb3 oxidase appeared to be dependent on the choice of substrate while proton pumping was indicated to occur only during O2-reduction.
|
44 |
Protein structural changes and tyrosyl radical-mediated electron transfer reactions in ribonucleotide reductase and model compoundsOffenbacher, Adam R. 18 January 2011 (has links)
Tyrosyl radicals can facilitate proton-coupled electron transfer (PCET) reactions that are linked to catalysis in many biological systems. One such protein system is ribonucleotide reductase (RNR). This enzyme is responsible for the conversion of ribonucleotides to deoxyribonucleotides. The beta2 subunit of class Ia RNRs contains a diiron cluster and a stable tyrosyl radical (Y122*). Reduction of ribonucleotides is dependent on reversible, long-distance PCET reactions involving Y122* located 35 Å from the active site. Protein conformational dynamics are postulated to precede diiron cluster assembly and PCET reactions in RNR. Using UV resonance Raman spectroscopy, we identified structural changes to histidine, tyrosine, and tryptophan residues with metal cluster assembly in beta2. With a reaction-induced infrared spectroscopic technique, local amide bond structural changes, which are associated with the reduction of Y122*, were observed. Moreover, infrared spectroscopy of tyrosine-containing pentapeptide model compounds supported the hypothesis that local amide bonds are perturbed with tyrosyl radical formation. These findings demonstrate the importance of the amino acid primary sequence and amide bonds on tyrosyl radical redox changes. We also investigated the function of a unique tyrosine-histidine cross-link, which is found in the active site of cytochrome c oxidase (CcO). Spectrophotometric titrations of model compounds that mimic the cross-link were consistent with a proton transfer role in CcO. Infrared spectroscopic data support the formation of tyrosyl radicals in these model compounds. Collectively, the effect of the local structure and the corresponding protein dynamics involved in tyrosyl radical-mediated PCET reactions are illustrated in this work.
|
45 |
Yeast mitochondrial copper metabolism: topology and role of Cox11pKhalimonchuk, Oleh 16 January 2006 (has links) (PDF)
Cytochrome c oxidase (COX) is one of two known Cu-containing enzymes in mitochondria. Delivery and insertion of copper into COX are very complex processes that require multiple steps and involve a large number of assisting factors. One of the involved components is Cox11p, a copper binding protein in the inner mitochondrial membrane that is conserved from prokaryotes to eukaryotes. Cox11p is essential for respiratory growth and implicated in the assembly of the CuB site located in subunit Cox1p of COX. In the thesis the topology of Cox11p was determined and evidence for its association with the mitochondrial translation machinery is provided. The interaction of Cox11p with mitoribosomes is mediated by its single evolutionary conserved transmembrane segment and appears to be indirect and mediated by another conserved membrane protein(s). A model is proposed in which the CuB site is co-translationally formed by a transient interaction between Cox11p and the nascent Cox1p in the mitochondrial intermembrane space. In addition the genetic and biochemical characterization of S. pombe Cox11p homologue was performed. Two versions of cox11+ gene are detected in a haploid S. pombe genome. Cells lacking either of the cox11+ copies remain respiratory competent, whereas deletion of both S. pombe cox11+ alleles appears to result in either spore lethality or in severe decrease of spores viability. Thus, both versions of SpCox11p are functional and important. In S. pombe Cox11p exists as a tandem with the mitoribosomal protein Rsm22p. This precursor protein is cleaved during mitochondrial import into two mature protein species corresponding to Rsm22p- and Cox11p-like moieties.
|
46 |
Phylogeography in sexual and parthenogenetic European oribatida / Phylogeograhie von sexuellen und parthenogenetischen europäischen OribatidenRosenberger, Martin 07 December 2010 (has links)
No description available.
|
47 |
Dysfonctions mitochondriales associées à l’acidose lactique du Saguenay-Lac-Saint-Jean révélées par l’étude d’un nouveau modèle murin de la maladieCuillerier, Alexanne 01 1900 (has links)
No description available.
|
48 |
Studium poruch cytochrom c oxidasy a ATP synthasy na biochemické a molekulární úrovni / Biochemical and molecular studies of cytochrome c oxidase and ATP synthase deficienciesFornůsková, Daniela January 2011 (has links)
Mgr. Daniela Fornuskova PhD thesis Biochemical and molecular studies of cytochrome c oxidase and ATP synthase deficiencies ABSTRACT The mammalian organism fully depends on the oxidative phosphorylation system (OXPHOS) as the major energy (ATP) producer of the cell. Disturbances of OXPHOS may be caused by mutations in either mitochondrial DNA (mtDNA) or nuclear DNA (nDNA). One part of the thesis is focused on the role of early and late assembled nuclear-encoded structural subunits of cytochrome c oxidase (CcO) as well as Oxa1l, the human homologue of the yeast mitochondrial Oxa1 translocase, in the biogenesis and function of the human CcO complex using stable RNA interference of COX4, COX5A, COX6A1 and OXA1L, as well as expression of epitope-tagged Cox6a, Cox7a and Cox7b, in HEK (human embryonic kidney)- 293 cells. Our results indicate that, whereas nuclear- encoded CcO subunits Cox4 and Cox5a are required for the assembly of the functional CcO complex, the Cox6a subunit is required for the overall stability of the holoenzyme. In OXA1L knockdown HEK-293 cells, intriguingly, CcO activity and holoenzyme content were unaffected, although the inactivation of OXA1 in yeast was shown to cause complete absence of CcO activity. In addition, we compared OXPHOS protein deficiency patterns in mitochondria from skeletal...
|
49 |
Genetické příčiny deficitu cytochrom c oxidázy u dětí / Genetické příčiny deficitu cytochrom c oxidázy u dětíVondráčková, Alžběta January 2014 (has links)
Mitochondria are the key source of vital ATP molecules, which are largely produced within cells by a system of oxidative phosphorylation (OXPHOS). Genetic defects affecting any of the components of the oxidative phosphorylation system or the structure and function of mitochondria lead to mitochondrial disorders, which occur at an incidence rate of 1 in 5000 live births. Cytochrome c oxidase (COX) is the terminal enzyme and electron acceptor of a respiratory chain that catalyses oxygen to produce a water molecule. In addition to complex I deficiency, isolated or combined COX deficiency is the most common respiratory chain defect in paediatric patients, and it can arise from mutations located either in mitochondrial DNA or in nuclear genes encoding the structural subunits or corresponding assembly factors of the enzyme complex. However, the molecular basis of COX deficiency remains elusive in many patients despite advances in the identification of an increasing number of mutations and genes involved in the disease. This thesis focuses on the identification of the genetic causes of mitochondrial diseases in a cohort of 60 unrelated Czech children with clinically and laboratory confirmed COX-deficiency. With the use of a high-resolution melting analysis mutation screen, four heterozygous sequence...
|
50 |
Intracellular calcium, preconditioning and regulation of cellular respiration in heartLiimatta, E. (Erkki) 05 January 2010 (has links)
Abstract
Heart muscle has to work constantly throughout the life and its energy metabolism is heavily dependent on a continuous supply of oxygen. Energy metabolism must be effectively regulated to meet the demands of changing workloads in different circumstances. If the oxygen supply is interrupted, the function of the heart is easily disturbed and cells injured. Calcium metabolism is of great importance in these pathological conditions.
In this thesis respiratory regulation was studied by non-destructive optical methods in mouse heart. The myoglobin-deficient mouse was used as an experimental model to avoid the artefact caused by intracellular myoglobin. Results show that increased consumption of energy and oxygen lead to concomitant reduction of cytochrome aa3 and oxidation of flavoproteins. This finding supports the view that cell respiration in intact myocardium is dominantly regulated at the level of the respiratory chain.
The intracellular Ca2+ accumulation during ischemia is one of the major causes of irreversible ischemia-reperfusion injury. Ischemic preconditioning (IPC) has been shown to protect the heart muscle significantly from ischemic damage. In this thesis Ca2+ accumulation during ischemia and reperfusion was studied in perfused rat heart using Fura-2 as a fluorescent Ca2+ indicator. As there is a significant decrease in intracellular pH during prolonged ischemia, the pH-dependency of Fura-2 signal was taken into account. It was found that IPC attenuates Ca2+accumulation during ischemia and this was connected to a decrease in mitochondrial membrane potential. Both IPC and the pharmacologically induced preconditioning with the mitoKATP opener diaxozide were shown to be associated with increased production of superoxide monitored by means of lucigenin chemiluminescence. The superoxide production correlated with the oxidation-reduction state of flavoproteins.
We also describe here a method for measuring of intracellular free Ca2+ in mouse heart during ischemia by simultaneous monitoring of Fura-2 and the pH probe BCECF fluorescence by means of dual wavelength excitation of both probes. The paradoxical decrease of Fura-2 fluorescence during ischemia indicating decreasing intracellular Ca2+ concentration was due to the pH effect on the dissociation constant of the Fura-2-Ca2+ complex. When the pH-dependency of Fura-2 was compensated, an extensive Ca2+ accumulation during ischemia was detected. Much of the previous literature on this subject must be re-evaluated because the pH-dependency of intracellular Ca2+ probes has been largely overlooked.
|
Page generated in 0.0566 seconds