Spelling suggestions: "subject:"déshydroascorbate"" "subject:"déhydroascorbate""
1 |
Caractérisation des modifications peptidiques et protéiques engendrées par les produits de dégradation du déshydroascorbate par spectrométrie de masse / Characterization of peptide and protein modifications caused by the degradation products of dehydroascorbate with mass spectrometryKay, Phyla January 2013 (has links)
La vitamine C est un antioxydant connu et elle est utilisée comme supplément alimentaire et agent de conservation. Le déshydroascorbate (DHA) est une forme oxydée de la vitamine C. Chez l'humain, la plupart du DHA formé est rapidement retransformé en vitamine C par différentes voies enzymatiques. Toutefois, la dégradation du DHA mène à la formation de produits carbonylés réactifs (C=0) qui sont à leur tour impliqués dans la formation de produits de glycation avancée (AGE), entre autres en situation de stress oxydatif ou lors du vieillissement. De plus, dans les cas d’urémie chronique, l’élimination des produits carbonylés réactifs est diminuée. Récemment, notre laboratoire a démontré qu’un produit de dégradation du DHA modifiait le groupement thiol du glutathion. Cela suggère que les produits carbonylés réactifs pourraient également modifier les thiols d'autres peptides et protéines. L’objectif de cette étude est de caractériser les changements engendrés par les produits de dégradation du DHA sur différents peptides et protéines en utilisant des méthodes de spectrométrie de masse combinée avec la chromatographie liquide. Afin de mieux comprendre les modifications engendrées par le DHA, nous avons utilisé la chaîne ? de l’insuline, qui possède un nombre limité de sites cibles potentiels. En incubant la chaîne ? de l’insuline avec le DHA, nous avons observé des adduits de 130 Da sur les cystéines ayant un thiol libre par analyse aux spectromètres de masse. Des études cinétiques montrent que la modification par le DHA est plus efficace à pH 2,0 qu’à pH 7,0, car l'association des thiols libres en disulfure est facilitée à pH neutre comparativement à pH acide. Nous avons ensuite confirmé le phénomène sur des protéines entières, plus précisément l’?-lactalbumine et la ?-lactoglobuline qui présentent une plus grande complexité que la chaîne ? de l'insuline et qui pourraient être une des cibles physiologiques du DHA. Dans l’ensemble, nos résultats indiquent que les produits carbonylés réactifs provenant de la dégradation du DHA sont capables de modifier les thiols de protéines complexes. En perspective, il serait intéressant d’identifier l'impact physiologique d'une telle modification dans l’homéostasie cellulaire, plus particulièrement dans les dérèglements dus au stress oxydatif. [symboles non conformes]
|
2 |
Vers une meilleure compréhension des systèmes antioxydants chez la plante face aux contraintes environnementales : approches expérimentales et modélisation mécaniste / Towards a better understanding of antioxidant systems in plants under environmental constraints : experimental approaches and mechanistic modellingRahantaniaina, Marie Sylviane 12 April 2018 (has links)
Les voies métaboliques les plus importantes dans le contrôle du stress oxydant chez la plante restent à élucider. Celles liées au glutathion jouent un rôle important. Cependant, les réactions responsables de l'oxydation du glutathion (du GSH en GSSG) n'ont pas encore été clairement identifiées. L’analyse des données biochimiques, transcriptomiques et génétiques soulèvent des questions pour mieux comprendre comment la régulation redox liée au stress pourrait influer sur la signalisation hormonale chez les plantes. Par une approche de génétique inverse utilisant, notamment, le mutant photorespiratoire conditionnel cat2, nous avons étudié la réponse et l'importance fonctionnelle de trois voies potentielles, médiées par les glutathion S-transférases, les peroxirédoxines dépendant de la glutarédoxine et les déhydroascorbate réductases (DHARs) chez Arabidopsis. Ainsi, l'interaction entre les DHARs semble être nécessaire pour coupler les pools d'ascorbate et de glutathion lors d’un stress oxydant. En complément à l'approche expérimentale, une modélisation mécaniste a permis d'étudier la production de H2O2 et son métabolisme, en lien avec l'activité catalase et la voie ascorbate-glutathion. Le modèle révèle que la catalase et l'ascorbate peroxydase prennent en charge de concert le traitement de H2O2, y compris dans les conditions optimales de croissance. Nos simulations suggèrent que la disponibilité en NADPH peut déterminer l'oxydation du glutathion via la monodéshydroascorbate réductase. Nos résultats expérimentaux et le modèle cinétique valident que la sensibilité du statut du glutathion au stress oxydant constitue un senseur approprié des augmentations du H2O2. / The most important metabolic pathways in the control of oxidative stress remain to be elucidated in plants. Those linked to glutathione play an important role. However, the reactions responsible for its oxidation have not been clearly identified. Here, analysis based on available biochemical, transcriptomic and genetic data emphasized likely important questions to be elucidated for a full understanding of how stress-related redox regulation might impinge on phytohormone-related signaling pathways. Using a reverse genetics approach and the photorespiratory conditional cat2 mutant, we studied the response and functional importance of three potential routes for glutathione oxidation pathways mediated by glutathione S-transferases, glutaredoxin dependent peroxiredoxins, and dehydroascorbate reductases (DHAR) in Arabidopsis during oxidative stress. Hence, interplay between different DHARs appears to be necessary to couple ascorbate and glutathione pools and to allow glutathione-related signaling during enhanced H2O2 metabolism. In addition to experimental work, modelling is another way to investigate H2O2 production and its metabolism related to catalase activity and ascorbate glutathione pathway. This approach led to major conclusions, that catalase and ascorbate peroxidase can share the load in H2O2 processing even in optimal growth conditions. Furthermore, simulations propose that NADPH availability may determine glutathione oxidation through its influence on monodehydroascorbate reduction. Taken together, experimental results and our kinetic model strengthen that the sensitivity of glutathione status to oxidative stress acts as a suitable sensor of increased H2O2.
|
3 |
Antioxidant systems and protein phosphatases in metabolic and signaling responses to oxidative stress / Les systèmes antioxydants et les protéine phosphatases dans le métabolisme et signalisation liée au stress oxydantLi, Shengchun 13 June 2013 (has links)
Le stress oxydant est un acteur clé dans les réponses des plantes à des conditions contraignantes. En raison de la complexité de la régulation de l’état redox cellulaire, il reste beaucoup à élucider concernant les interactions entre différentes composantes dans ces conditions. Grâce à une approche de génétique inverse basée sur un mutant d’Arabidopsis déficient en catalase (cat2) qui présente des modifications d’état redox prévisibles et bien définies, cette étude a exploré les interactions entre le stress oxydant et (1) un gène spécifique impliqué dans la déphosphorylation des protéines, (2) des enzymes spécifiques impliquées dans les systèmes antioxydants réducteurs. Les résultats obtenus révèlent que la sous-unité B'γ de la protéine phosphatase de type 2A (PP2A-B'γ) est importante dans la détermination des phénotypes et des réponses de défense photopériode-dépendantes chez cat2. En conditions de jours courts (SD), un double cat2 pp2a-b'γ mutant montrait une gamme de réponses qui n’étaient pas observées chez cat2. Ces effets comprenaient l’apparition de lésions ainsi que l’accumulation de l’acide salicylique et d’autres composés de défense. Des analyses métabolomiques et protéomiques ont permis de démontrer que ces effets étaient accompagnés de modifications de l’abondance de métabolites et protéines spécifiques, ainsi que des changements dans le statut de phosphorylation de certains polypeptides. Dans un deuxième volet du travail, l’importance d’une enzyme productrice du NADPH a été évaluée en produisant des doubles cat2 nadp-me2 mutants chez lesquels l’isoforme majeure de l’enzyme malique cytosolique n’est plus exprimée. Malgré une induction de cette enzyme par le stress oxydant aux niveaux de transcrits et d’activité, et une diminution importante de l’activité foliaire associée aux mutations nadp-me2, peu de différence a été observée entre les lignées cat2 et cat2 nadp-me2. De même, la mutation nadp-me2 n’a pas affecté la réponse phénotypique de plantes exposées à l’ozone. Dans la troisième partie du travail, le couplage entre les pools ascorbate et glutathion lors du stress oxydant a été exploré par l’introduction de mutations pour la déshydroascorbate réductase (DHAR) dans le fond génétique cat2. L’activité extractible de cette enzyme a été diminuée à des niveaux très faibles chez des lignées portant à la fois les mutations dhar1 et dhar3. Cependant, peu de différence a été observée dans les phénotypes et les statuts d’ascorbate et de glutathion chez un triple mutant cat2 dhar1 dhar3 par rapport à cat2. Des analyses préliminaires d’un quadruple cat2 dhar1 dhar2 dhar3 mutant semblent pourtant indiquer que les trois DHARs jouent des rôles fonctionnellement redondants dans le stress oxydant. Dans son ensemble, ces travaux apportent des données nouvelles sur les enzymes qui régulent les réponses aux stress oxydants et ont généré des outils intéressants pour des études ultérieures. / Oxidative stress is a key player in plant responses to challenging environmental conditions. The intricate nature of the regulation of cellular redox state means that much remains to be elucidated on interactions between different components in these conditions. By using a genetic approach based on a catalase-deficient Arabidopsis mutant (cat2) that presents well-defined, predictable changes in redox state, this study explored interactions between oxidative stress and (1) a specific gene involved in protein dephosphorylation, and (2) specific enzymes involved in the antioxidative/reducing system. The results showed that protein phosphatase 2 subunit B'γ (PP2A-B'γ) is involved in determining day length-dependent phenotypes and related defense responses in cat2. A cat2 pp2A-B'γ double mutant showed a range of responses that were not observed in cat2 grown in short days, including lesion formation and accumulation of salicylic acid (SA) and related metabolites. Metabolomics and proteomics analyses showed that these effects were associated with altered abundance of specific metabolites and proteins, as well as changes in protein phosphorylation status. A second part of the study investigated the importance of NADP-generating enzymes in oxidative stress by production of cat2 nadp-me2 double mutants, in which the cytosolic isoform of NADP-malic enzyme is knocked out. Although NADP-ME2 was shown to be induced by oxidative stress, and mutants for this gene had much decreased leaf NADP-malic enzyme activity, no effects on cat2 phenotypes or redox profiles were apparent. Similarly, phenotypic responses to ozone were not affected in an nadp-me2 single mutant. In the third part, coupling between ascorbate and glutathione pools during oxidative stress was investigated by introduction of loss of function mutations for dehydroascorbate reductase (DHAR) into the cat2 background. In lines carrying a combination of dhar1 and dhar3 mutations, extractable leaf activity was decreased to very low levels. Despite this, cat2 dhar1 dhar3 and cat2 phenotypes and ascorbate and glutathione pools were similar. However, preliminary functional analysis of a cat2 dhar1 dhar2 dhar3 quadruple mutant suggested that the three DHARs play functionally redundant roles in oxidative stress. Overall, the work provides new data on enzymes that regulate responses to oxidative stress and has produced interesting genetic tools for further study.
|
Page generated in 0.0317 seconds