• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of dynamical interactions of axon shafts and their biophysical modelling / Analyse des interactions dynamiques des corps d'axones et leur modélisation biophysique

Šmít, Daniel 15 May 2017 (has links)
La fasciculation des axones joue un rôle essentiel dans le développement des réseaux neuronaux. Cependant, la dynamique de la fasciculation axonale, ainsi que les mécanismes biophysiques à l’œuvre dans ce processus, demeurent encore très mal compris. En vue d'étudier les mécanismes de fasciculation d'axones ex vivo, nous avons développé un système modèle simple, constitué par des explants d'épithélium olfactif de souris embryonnaires en culture, à partir desquels poussent les axones des neurones sensoriels olfactifs. Grâce à une étude en vidéomicroscopie, nous avons observé que ces axones interagissent de façon dynamique par leur fibre, à la manière de fermetures éclair pouvant se fermer ("zippering") ou s'ouvrir ("unzippering"), ce qui conduit respectivement à la fasciculation ou à la défasciculation des axones. Mettant à profit cette nouvelle préparation expérimentale pour l'étude des interactions dynamiques entre axones, nous avons développé une analyse biophysique détaillée des processus de zippering/unzippering.Nous mettons en évidence dans notre travail l'existence d'un mécanisme biophysique cohérent de contrôle des interactions locales entre fibres axonales. Ce mécanisme local est à mettre en relation avec les changements de la structure globale du réseau axonal (degré de fasciculation) qui s'opèrent sur une échelle temporelle plus longue. Enfin, nous discutons la signification fonctionnelle de nos observations et analyses, et proposons un nouveau rôles de la tension mécanique dans le développement du système nerveux : la régulation de la fasciculation des axones et, en conséquence, de la formation des cartes topologiques au sein des réseaux neuronaux. / While axon fasciculation plays a key role in the development of neural networks, very little is known about its dynamics and the underlying biophysical mechanisms. In a model system composed of neurons grown ex vivo from explants of embryonic mouse olfactory epithelia, we observed that axons dynamically interact with each other through their shafts, leading to zippering and unzippering behaviour that regulates their fasciculation. Taking advantage of this new preparation suitable for studying such interactions, we carried out a detailed biophysical analysis of zippering, occurring either spontaneously or induced by micromanipulations and pharmacological treatments.We show that there is a consistent mechanism which governs local interactions between axon shafts, supported by broad experimental evidence. This mechanism can be reconciled with changes in global structure of axonal network developing on slower time scale, analogically to well-studied relation between local relaxations, and topological changes and coarsening in two-dimensional liquid foams. We assess our observations and analysis in light of possible in vivo functional significance and propose a new role of mechanical tension in neural development: the regulation of axon fasciculation and consequently formation of neuronal topographic maps.
2

Drosophila melanogaster, as a model system to study the cell biology of neuronal GPCRs / Drosophila melanogaster, un organisme modèle pour l'étude de la biologie cellulaire des RCPGs neuronaux

Gaffuri, Anne-Lise 24 September 2012 (has links)
Le récepteur cannabinoique de type 1 (CB1R) est l’un des récepteurs couplés aux protéines G les plus abondants du cerveau mammifère. CB1R a longtemps été décrit comme un récepteur présynaptique régulant de manière rétrograde la transmission synaptique. Cependant, depuis les vingt dernières années, de nouveaux rôles ont été découverts et il est maintenant clairement admis que l’action des endocannabinoides (eCBs) ne se limite pas à la régulationde la neurotransmission au niveau de synapses adultes déjà établies. En effet, les eCBs et le CB1R sont des acteurs majeurs de l’ensemble des phases du développement cérébral. Cependant, les mécanismes moléculaires impliqués n’ont toujours pas été identifiés. Les mécanismes cellulaires auxquels nous nous intéressons ne dépendant pas de l’environnement cellulaire, nous proposons donc de combiner la puissance génétique du modèle drosophile à l’accessibilité et la haute résolution offerte par la culture primaire de neurones. De plus, le récepteur CB1 ne possédant pas d’orthologue parmi les invertébrés, ce système offre la possibilité d’étudier la biologie du récepteur en s’affranchissant de la machinerie endocannabinoide. Cependant, actuellement, aucun protocole de culture primaire de neurones de drosophile ne permet d’obtenir des cellules hautement différenciées et polarisées à basse densité. Ainsi, nous avons tout d’abord développé, optimisé et validé un nouveau protocole permettant de d’obtenir des neurones fonctionnels, hautement différenciés et polarisés en culture de basse densité. Dans un second temps, nous avons démontré que l’activation durécepteur CB1, exprimé ectopiquement dans les neurones de drosophile, entrainait son internalisation, de manière identique à ce qui avait déjà été observé chez les mammifères. Puis, nous avons étudié l’effet de l’expression et de l’activation ectopique de CB1R sur le développement neuronal chez la drosophile. Ainsi, nous avons démontré que l’activation du récepteur module directement la dendritogénèse. Afin de compléter la caractérisation de notremodèle, nous avons démontré que l’activation transitoire du récepteur dans les corps pédonculés (le centre de la mémoire olfactive chez la drosophile) altérait spécifiquement la formation d’une forme consolidée de mémoire après un conditionnement aversif. En conclusion, la validation du modèle drosophile dans l’étude de la biologie cellulaire durécepteur CB1 ouvre de nouvelles perspectives quant à la détermination des mécanismes moléculaires régissant l’action du récepteur sur le fonctionnement neuronal. / The type-1 cannabinoid receptor (CB1R), the neuronal receptor for the major psychoactive substance of marijuana, is one, of the most abundant G-protein coupled receptors in the mammalian central nervous system. CB1R is traditionally described as a presynaptic receptor that retrogradely regulates synaptic transmission. In addition to this now relatively wellcharacterized function, in the last two decades it has become widely recognized that endocannabinoid (eCB) actions in the brain are not limited to the regulation of neurotransmission at established adult synapses. Indeed, eCB and CB1R are now recognized to be involved in brain development at the synaptic, neuronal and network levels. However, precise mechanisms underlying these processes remain poorly described. Since cellular mechanisms that mediate CB1R-activition dependent neuronal remodeling and subneuronal targeting have been demonstrated to be cell-autonomous, we aimed to combine the power of Drosophila genetics with the experimental accessibility and single-cell resolution of lowdensity primary neuronal cultures, a tool currently lacking in Drosophila. Moreover, becauseDrosophila does not have a CB1R ortholog, CB1R cell biology may be observed independently from eCB machinery. Thus, we first developed and validated an in vitro culture protocol that yields mature and fully differentiated Drosophila neurons. Secondly, we showed that activation-dependent endocytosis of ectopically expressed CB1R is conserved in Drosophila neurons. Next, we investigated whether ectopic expression and activation of CB1R in Drosophila modulate neuronal development. As observed in mammals, we observed that activation of CB1R impairs dendritogenesis in a cell-autonomous manner. For further characterization of our model, we showed that, as with mammals, transient ectopic CB1R expression and activation in mushroom body neurons (the center of olfactory memory in Drosophila) modulate the formation of a consolidated form of aversive memory. In conclusion, the validation of this new animal model opens new perspectives to better characterize mechanisms underlying modulation of neuronal functions induced by CB1Ractivity
3

Rôle de la phospholipase D1 dans le trafic membranaire : implication dans le développement neuronal et l'exocytose régulée

Ammar, Mohamed Raafet 16 September 2013 (has links) (PDF)
La croissance neuritique est un mécanisme complexe qui fait toujours l'objet d'intenses investigations. Les donnés actuelles ont permis de mettre en évidence l'implication de trois mécanismes principaux dans la croissance neuritique : i) la dynamique du cytosquelette, ii) le trafic intracellulaire et l'apport membranaire au niveau du cône de croissance et iii) la signalisation cellulaire, principalement via la voie MAPK-ERK1/2, qui abouti à la régulation de la transcription.La PLD1 et son produit l'acide phosphatidique semblent être au centre de voies majeures impliquées dans le développement neuronal. Mes travaux ont permis d'approfondir nos connaissances sur le rôle cellulaire de la PLD1 au cours de la croissance neuritique. J'ai montré que la PLD1 en collaboration avec la kinase RSK2 régule la fusion des vésicules positives pour Ti-VAMP/VAMP7 au cours de la croissance neuritique. D'autre part, j'ai établi que la PLD1 joue un rôle important dans le maintien de la signalisation endosomale de la voie MAPK-ERK1/2-RSK2-CREB induite par les neurotrophines. J'ai également montré que la PLD1 régule l'activation de mTOR/p70S6K en réponse au BDNF. La dérégulation des voies MAPK-ERK1/2 et mTOR/p70-S6K pourraient être à la base de la réduction de l'arborisation dendritique et de la maturation des épines dendritique observée dans les neurones corticaux Pld1-/- en culture. En plus de l'implication de RSK2 dans la régulation de la PLD1, j'ai également montré que la PLD1 régule l'activation de RSK2 en réponse aux neurotrophines, probablement via une boucle de rétrocontrôle. Ainsi les donnés obtenus suggèrent un lien fort entre les deux protéines au cours du développement neuronal. A la lumière de ces donnés, un dysfonctionnement de ce mécanisme pourrait expliquer le retard mental observé chez les patients atteints du syndrome de Coffin-Lowry causé par la perte de l'activité kinase de RSK2. D'autre part, les résultats obtenus suggerent un rôle de la PLD1 dans l'exocytose des vésicules.
4

Rôle de la phospholipase D1 dans le trafic membranaire : implication dans le développement neuronal et l'exocytose régulée / Role of phospholipase D1 in membrane trafficking : involvement in neural development and regulated exocytosis

Ammar, Mohamed Raafet 16 September 2013 (has links)
La croissance neuritique est un mécanisme complexe qui fait toujours l’objet d’intenses investigations. Les donnés actuelles ont permis de mettre en évidence l’implication de trois mécanismes principaux dans la croissance neuritique : i) la dynamique du cytosquelette, ii) le trafic intracellulaire et l’apport membranaire au niveau du cône de croissance et iii) la signalisation cellulaire, principalement via la voie MAPK-ERK1/2, qui abouti à la régulation de la transcription.La PLD1 et son produit l’acide phosphatidique semblent être au centre de voies majeures impliquées dans le développement neuronal. Mes travaux ont permis d’approfondir nos connaissances sur le rôle cellulaire de la PLD1 au cours de la croissance neuritique. J’ai montré que la PLD1 en collaboration avec la kinase RSK2 régule la fusion des vésicules positives pour Ti-VAMP/VAMP7 au cours de la croissance neuritique. D’autre part, j’ai établi que la PLD1 joue un rôle important dans le maintien de la signalisation endosomale de la voie MAPK-ERK1/2-RSK2-CREB induite par les neurotrophines. J’ai également montré que la PLD1 régule l’activation de mTOR/p70S6K en réponse au BDNF. La dérégulation des voies MAPK-ERK1/2 et mTOR/p70-S6K pourraient être à la base de la réduction de l’arborisation dendritique et de la maturation des épines dendritique observée dans les neurones corticaux Pld1-/- en culture. En plus de l’implication de RSK2 dans la régulation de la PLD1, j’ai également montré que la PLD1 régule l’activation de RSK2 en réponse aux neurotrophines, probablement via une boucle de rétrocontrôle. Ainsi les donnés obtenus suggèrent un lien fort entre les deux protéines au cours du développement neuronal. A la lumière de ces donnés, un dysfonctionnement de ce mécanisme pourrait expliquer le retard mental observé chez les patients atteints du syndrome de Coffin-Lowry causé par la perte de l’activité kinase de RSK2. D’autre part, les résultats obtenus suggerent un rôle de la PLD1 dans l’exocytose des vésicules. / Neurite outgrowth is a complex mechanism that is still the subject of intense investigation. Current given helped to highlight the involvement of three main mechanisms in neurite growth : i) the dynamics of the cytoskeleton, ii) the intracellular membrane trafficking and membrane supply at the growth cone and iii) cell signaling , mainly via the MAPK-ERK1 / 2, which resulted in the regulation of transcription. The PLD1 and its product the phosphatidic acid (PA) appear to be at the center of the major pathways involved in neuronal development. My work has deepened our understanding of the cellular role of PLD1 during neurite outgrowth. I showed that PLD1 together with the protein kinase RSK2 regulates the fusion of vesicles positive for Ti-VAMP/VAMP7 during neurite outgrowth. On the other hand, I have determined that PLD1 plays an important role in maintaining the endosomal signaling pathwayMAPK-ERK1/2-RSK2-CREB induced by neurotrophin. I also showed that PLD1 regulates the activation of mTOR/p70S6K in response to BDNF. Deregulation of MAP -ERK1 / 2 and mTOR/p70-S6K pathways could be the basis for the reduction of dendritic arborization and maturation of dendritic spines observed in cortical neurons Pld1-/- culture. In addition to the involvement of RSK2 in the regulation of PLD1, I also showed that PLD1 regulates RSK2 activation in response to neurotrophin, possibly via a feedback loop. Thus given obtained suggest a strong link between the two proteins during neuronal development. In the light of these data, alteration of this mechanism could explain the mental retardation observed in patients with Coffin -Lowry syndrome caused by loss of the kinase activity of RSK2. On the other hand, our results suggest a role for PLD1 in exocytosis of vesicles.

Page generated in 0.0962 seconds