Spelling suggestions: "subject:"axone"" "subject:"oxone""
1 |
Le développement neuronal rôle de la protéine adaptatrice CD3zeta et mécanismes régulant la fonction du récepteur de chimiokine CXCR4 /Baudouin, Stéphane Boudin, Hélène. January 2009 (has links)
Reproduction de : Thèse de doctorat : Médecine. Neurobiologie : Nantes : 2009. / Bibliogr.
|
2 |
Données nouvelles sur les innervations cholinergiques de l'hippocampe et du néostriatum et sur leur ultrastructure au cours du développementAznavour, Nicolas January 2004 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
3 |
Modélisation de l'interaction dynamique protéines Tau - microtubules / Modeling the dynamical interaction Tau Proteins - microtubulesHervy, Jordan 27 November 2018 (has links)
La maladie d’Alzheimer, de nombreux syndromes parkinsoniens, certaines démences fronto-temporales telle que la maladie de Pick sont des exemples de maladies neurodégénératives appelées « tauopathies » qui sont caractérisées par la présence d’agrégats intracellulaires de protéines Tau dans le cerveau des sujets atteints. La formation de tels agrégats résulterait de l’altération des propriétés et fonctions normales des protéines Tau à réguler et structurer les réseaux de microtubules au sein des axones ; ce qui se traduit par une perte progressive de la masse des microtubules dans les axones, la désorganisation du transport axonal et au final la mort cellulaire. La compréhension des tauopathies passe donc par celle :- de la dynamique des microtubules qui est régie par les mécanismes de l’instabilité dynamique au cours desquels les microtubules alternent en permanence entre une phase de croissance (polymérisation des GTP-tubulines) et de rétrécissement (dissociation des GDP-tubulines);- et des interactions entre protéines Tau – microtubule qui jouent un rôle important dans la polymérisation, la stabilisation des microtubules et l’organisation spatiale du réseau de microtubules dans l’axone.L'objectif de ce travail de thèse est de construire et de consolider les bases qui permettront d'aller vers une modélisation fine de l'interaction des microtubules dynamiques avec une population de protéines Tau. Pour y parvenir, deux problèmes ont été abordés : (i) la dynamique intrinsèque des microtubules, c'est-à-dire en l'absence de protéines Tau et (ii) l'interaction Tau-Microtubule pour des microtubules stabilisés, c'est-à-dire non-dynamiques.Afin d’aborder ces problèmes, le travail de cette thèse a été mené selon deux approches :-Théorique : développements de modèles mathématiques décrivant les différents processus-Simulations numériques : développement de programmes Monte-Carlo (sous Matlab)Les résultats principaux ont été organisés et structurés en deux grandes parties :Développement d’un modèle mésoscopique décrivant l’instabilité dynamique des microtubules à l’échelle de la tubuline (unité fondamentale du microtubule). Ce modèle décrit une instabilité dynamique des microtubules non-Markoviènne dont les caractéristiques sont comparables aux observations expérimentales.2) Développement d’un modèle décrivant la dynamique de décoration d’un microtubule stabilisé (absence d’instabilité dynamique) par une population de protéines Tau. Les caractéristiques de ce modèle sont basées, pour la construction, et comparables aux expériences de cosedimentation et de microscopie électronique. / Alzheimer’s disease, some frontotemporal dementias such as the Pick’s disease are examples of neurodegenerative diseases called "Tauopathies" which are characterized by the presence of intracellular aggregates of Tau-proteins in the brain of patients. The formation of such aggregates would result from the loss of the normal functions of the Tau-proteins to properly organize the microtubule network within the axon ; which leads to a progressive loss of microtubule’s mass within the axons, the disorganization of the axonal transport and at the end, the cell death. To understand the Tauopathies, we have to understand :- the dynamic of microtubules which is controlled by the mechanisms of the dynamic instability in which microtubules switch between a phase of growth (polymerization of GTP) and a phase of shrinkage (dissociation of GDP)- the interaction between Tau-proteins and microtubules which play an important role in the polymerization, stabilization and spatial organization of microtubules within the axonal network.The objective of this work is to build and consolidate the blocks in order to go to precise modeling of the interaction of microtubules with a dynamic population of Tau-proteins. To this purpose, two problems were considered : (i) the intrinsic dynamic of microtubules (i.e., in absence of Tau-proteins) and (ii) the interaction between Tau-proteins and a stabilized-microtubules (i.e., in absence of dynamic instability)In order to this, the work has been done according to two approaches :- Theoretical : development of mathematical models describing the different process.- Simulation : development of Monte-Carlo programs (under Matlab)The main results have been organized in two main parts :1) Development of a mesoscopic model describing the dynamic instability of microtubules at the scale of the tubulin. This model describes the non-Markovian dynamic of microtubules and the characteristics are compatible with the experimental observations.2) Development of a model describing the dynamical decoration of a microtubule by a population of Tau-proteins. The characteristics of the model are based, for the construction, and compatible with the experimental observations.
|
4 |
FONCTIONS DES MOLECULES SLITS ET ROBOS DANS LE DEVELOPPEMENT DES SYSTEMES COMMISSURAUX DU CERVEAU DES VERTEBRESDi Meglio, Thomas 16 November 2007 (has links) (PDF)
Des recherches menées chez les invertébrés ont conduit à la découverte de plusieurs molécules contrôlant le comportement des axones vis-à-vis de la ligne médiane, dont les molécules sécrétées Slits et leurs récepteurs membranaires Roundabouts (Robos). Nos travaux contribuent à confirmer in vivo la conservation de la fonction de ce système de guidage chez les vertébrés. Ce travail de thèse porte essentiellement sur l'analyse du développement de plusieurs systèmes neuronaux chez les souris déficientes pour un ou plusieurs des gènes slits ou robos. Il confirme que Robo1 et Robo2 sont essentiels au contrôle exercé par les Slits sur le croisement de la ligne médiane par plusieurs faisceaux d'axones du télencéphale. Nous avons également analysé le développement de plusieurs populations de neurones précérebelleux (NPC) du tronc cérébral. Nos résultats démontrent, pour la première fois, que le système Slit/Robo contrôle la capacité des neurones à migration tangentielle de croiser ou non la ligne médiane
|
5 |
Nouveau rôle de la Sémaphorine 6D et de son récepteur Plexine-A1 dans le ciblage des axones rétiniens / Deciphering a new role for Semaphorin 6D and its receptor Plexin-A1 in retinal axon targetingPrieur, Delphine 07 December 2018 (has links)
Durant le développement, l’innervation d’une zone précise du cerveau par certaines branches axonales est un mécanisme encore mal compris. Afin d’aborder cette question, je me suis intéressée aux axones rétiniens qui innervent deux cibles principales du système visuel : le corps genouillé latéral dorsal (CGLd) et le colliculus supérieur. J’ai étudié le rôle de la protéine de guidage Sémaphorine 6D et de son récepteur Plexine-A1 dans l’innervation spécifique du CGLd par les axones rétiniens. J’ai ainsi découvert que chez les souris Sema6D-/- et Plexine-A1-/-, le tractus optique (formé par les axones rétiniens) entre dans le CGLd au lieu de le contourner et certains axones rétiniens innervent des régions ectopiques de l’autre côté du tractus optique. De plus, l’analyse des souris simple ou double hétérozygotes indique que ces deux protéines interagissent avec un mécanisme dose-dépendant. Grâce à des expériences de perte et de gain de fonction par électroporation rétinienne in utero, j’ai pu montrer la nécessité de Sema6D et de Plexine-A1 dans la rétine pour l’innervation des axones rétiniens et ce via des effets non cellulaire autonomes. Ces résultats révèlent un mécanisme dose-dépendant dans lequel Sema6D et PlexineA1 interagissent et assurent une communication axone-axone permettant l’innervation précise du CGLd par une sous-population d’axones rétiniens. / During development, axons branch at precise points to innervate a specific brain target, yet the mechanisms at hand are still unclear. To address this question, I used retinal axons forming the optic tract that innervate two principal targets of the visual system: the dorsal lateral geniculate nucleus (dLGN) and the superior colliculus. I investigated the role of the guidance receptor Plexin-A1and its ligand Semaphorin-6D (Sema6D) in this targeting process. Here I highlight a new type of phenotype in Plexin-A1-/- or Sema6D-/- mice. In these mice, the optic tract enters in the dLGN instead of circumscribing it and some retinal axons innervate ectopic regions at the other side of the optic tract. Furthermore, the analysis of simple or double heterozygotes mice reveals that Plexin-A1 and Sema6D interact together with a dose-dependent effect. Using loss and gain of function experiments (via retinal in utero electroporation), I showed that both are necessary in the retina for proper retinal innervation through non-cell autonomous effects. All these results reveal for the first time a dose-dependent mechanism, in which Sema6D and Plexin-A1 interact together. They monitor axon-axon communication to allow the correct innervation of the dLGN by a subpopulation of retinal axons.
|
6 |
Assurance qualité en dissection virtuelle des faisceaux de la matière blanche par tractographieGauvin, Alexandre January 2016 (has links)
Ce mémoire est divisé en quatre chapitres. D’abord, une introduction initie le lecteur au domaine des neurosciences. Ensuite, le chapitre 1 décrit les étapes de la dissection virtuelle par tractographie, à partir du phénomène physique de la diffusion jusqu’aux mesures statistiques des structures de la matière blanche. Le chapitre 2 présentera une nouvelle méthode d’assurance qualité, basée sur l’analyse volumique des faisceaux de la matière blanche, la contribution principale de ce mémoire. Finalement, la conclusion contient une discussion des problématiques non résolues ainsi que des perspectives d’avenir pour la tractographie.
|
7 |
Interaction de Tau avec la petite GTPase Rab5Morisse, Grégoire M. 07 1900 (has links)
La protéine Tau joue un rôle essentiel dans les neurones, notamment par ses
interactions avec les éléments du cytosquelette. Des études récentes ont également montré
que Tau était impliquée dans la motilité des organelles le long des microtubules axonaux.
Dans ce mémoire de Maîtrise, nous avons démontré par recouvrement sur gel une
nouvelle interaction in vitro pour Tau avec la petite GTPase Rab5, qui est impliquée dans
l’endocytose précoce. De plus, nous avons montré que Tau et Rab5 immuno-précipitaient
sur une même population de vésicules in vivo. La sur-expression de Tau dans des neurones
primaires de l’hippocampe nous a permis de montrer que Tau et Rab5 avaient une
distribution similaire dans l’axone des neurones, suggérant un rôle de Tau dans l’ancrage
des endosomes précoces sur les microtubules. Par contre, à la différence de ce qui a pu être
observé dans certaines études, la sur-expression de Tau n’a pas inhibé le transport axonal
des endosomes précoces. Enfin, nous avons montré que Tau interagissait préférentiellement
avec la Rab5 active liée au GTP et des résultats préliminaires nous laissent penser que Tau
serait un effecteur ou une GAP pour Rab5.
Dans les tauopathies, la Tau devient hyperphosphorylée, décroche des microtubules
axonaux et forme des agrégats dans le corps cellulaire du neurone. Ces modifications
biochimiques et de localisation de la protéine Tau pourraient être la source d’une perte
d’interaction de la Tau avec Rab5 et être responsable de certaines atteintes neurologiques
observées dans les tauopathies. / Tau protein plays an essential role in neurons, in particular in its interactions with
cytoskeletal elements. Recent studies have shown that Tau was also regulating organelles
motility along axonal microtubules.
In this work, using far-western blot, we have shown a new in vitro interaction for
Tau with the small GTPase Rab5, a protein implicated in early endocytosis. Furthermore,
we have shown that Tau and Rab5 were immuno-precipited on a same pool of vesicles in
vivo. Over-expression of Tau in primary hippocampal neurons have shown that Tau and
Rab5 have a similar distribution in axons, suggesting that Tau plays a role as an anchor
protein for early endosomes onto microtubules. In contrast to what has been shown earlier
in other studies, Tau did not blocked axonal transport of early endosomes. Finally, we have
shown that Tau was interacting preferentially with the active form of Rab5 bound to GTP
and preliminary results suggest that Tau would be an effector or a GAP for Rab5.
In tauopathies, Tau become hyperphosphorylated, loose its affinity with axonal
microtubules and form aggregates in the cell body of the neuron. This biochemicals
modifications and relocalisation of Tau protein might be responsible for a loss of
interaction between Tau and Rab5 and consequently of some of the neuropathological
symptoms observed in tauopathies.
|
8 |
Properties of axonal and synaptic extracellular field potentials in the barn owlMcColgan, Thomas 12 September 2018 (has links)
Im Gehirn gemessene Extrazelluläre Feldpotentiale (EFPs) sind ein wichtiges Maß
für neuronale Aktivität. In vielen Fällen ist der genaue physiologische Ursprung dieser
Potentiale unbekannt oder umstritten. Der auditorische Hirnstamm der Schleiereule
bietet eine ausgezeichnete Möglichkeit, die EFPs und ihren Ursprung zu untersuchen.
Der Hirnstamm der Eule ist ideal, weil das Feldpotential in ihm sehr stark ist, weil die
zugrundeliegende Anatomie wohl-untersucht ist, und weil das Potential sehr einfach
durch auditorische Stimulation gesteuert werden kann. In dieser Arbeit präsentiere
ich zwei Beispiele, in welchen ich mir die einzigartigen Eigenschaften der Schleiereule
zunutze mache, um das EFP zu erforschen. Das erste Beispiel behandelt Axone, und
ich zeige, dass neuronale Aktivität in Axonbündeln, welche eine charakteristische
Endzone besitzen, ein starkes Dipolmoment erzeugen kann. Im zweiten Beispiel
behandele ich Synapsen. Aus den EFPs der Synapsen konnte ich die Merkmale
der synaptischen Kurzzeitplastizität extrahieren. Die Methoden und Erkenntnisse
die ich entwickelt habe sind auf andere Organismen übertragbar und erweitern das
Verständnis vom Einfluss unterschiedlicher anatomischer Strukturen auf das EFP. / Extracellular field potentials (EFPs) recorded in the brain are an important
indicator of neural activity for neuroscientists. In many cases, their physiological
basis is unknown or debated. The barn owl auditory brainstem provides an excellent
opportunity to study these EFPs and their origins. The barn owl auditory brainstem
is ideal because the field potentials are very large and very easily controlled by the
auditory stimulus, and the underlying anatomy is well known. Here I present two
examples of exploiting the unique properties of the EFP in the barn owl auditory
brainstem. The first is concerned with axons, where I show that activity in axon
bundles with characteristic termination zones generates strong dipole moments. The
second example is concerned with synaptic currents, from which I was able to extract
a signature of short-term plasticity. The methods and insights I developed are
applicable to other organisms as well, and contribute to the general understanding
of the roles different anatomical structures can play in the generation of EFPs.
|
9 |
Champs électriques : un potentiel système de codage des informations spatiales dans l'embryon / Coding spatial information in embryo with electric fieldsDinvaut, Sarah 20 June 2019 (has links)
La navigation des axones sur de longues distances est jalonnée de zones de choix, entraînant des changements de direction pour suivre des trajectoires hautement stéréotypées. Dans ce modèle de guidage séquentiel, chaque étape est vue comme essentielle à la suivante. De façon intrigante, quelques exemples suggèrent que le suivi strict de la trajectoire puisse être dispensable pour que les axones atteignent leur destination finale. Nous nous sommes intéressés à cette capacité trajectoire indépendante des axones à localiser leur cible. Pour ce faire, nous avons utilisé deux populations neuronales de la moelle épinière ayant des cibles diamétralement opposées dans l'organisme : les interneurones dorsaux, qui projettent dans le système nerveux central, et les motoneurones ventraux, qui ciblent les muscles en périphérie. Après avoir été déplacés chirurgicalement dans des embryons de poulet, ces deux populations de neurones envoient des axones vers leurs territoires cibles qu'ils atteignent par des trajectoires inédites. Ces observations suggèrent l'existence d'un système de guidage global délivrant aux axones des informations spatiales à large échelle. Outre les signaux moléculaires de guidage bien connus, les signaux bioélectriques sont également des candidats intéressants pour remplir cette fonction. Des champs électriques (CE) ont été détectés dans les embryons en développement et sont connus pour être des vecteurs d'information spatiale. Nous avons testé sur des neurones en culture si des CE comparables à ceux mesurés pendant le développement embryonnaire pourraient guider l'élongation des axones moteurs et d'interneurones dorsaux de poulet. Nous avons trouvé que les deux types d'axones s'orientent en direction de la cathode (-) dans un CE. Cependant, ils présentent des sensibilités significativement différentes aux CE, qui pourraient contribuer à des choix de trajectoires différents in vivo. Ensuite, nous avons observé un effet inhibiteur de la Concanavaline A (ConA) sur la réponse des axones aux champs, indiquant un rôle des récepteurs membranaires connus pour lier la ConA. Nous avons donc réalisé un screen pharmacologique sur des pompes et des canaux ioniques qui se lient à la ConA, conduisant à l'identification des pompes Na+/K+ ATPases comme des candidats prometteurs. Des expériences préliminaires d'invalidation des sous-unités de ces pompes suggèrent qu'elles contribuent à la réponse aux CE et à la navigation axonale in vitro et in vivo. Finalement, nos résultats apportent une vision nouvelle des mécanismes assurant la fidélité et la résilience du guidage axonal, et révèlent la contribution méconnue des signaux bioélectriques et des pompes Na+/K+ ATPases au développement neuronal / Long distance navigation of axons is marked by choice points, instructing highly stereotyped directional changes of axon trajectories. In this stepwise model, each step is thought to be essential for the next one, but intriguingly, examples suggest that pathway experience can be dispensable for axons to reach their final destination. We investigated pathway-independent ability of axons to locate their target, using two populations of spinal cord neurons having drastically different target location in the organism: the dorsal interneurons, which target the central nervous system and ventral motoneurons, which target muscles. After grafting these neurons at ectopic positions in the chicken embryo, both neuron-types were observed to form axons which, remarkably, oriented towards and reached appropriate targets. This suggests that, in the embryo, an overall guidance information might exist that enables the axons to locate positions over large scales. Beside well-studied chemical cues, bioelectric signals are attractive candidates for this function. Electric Fields (EF) were detected in the embryo and reported to encode spatial information. Thus, using in vitro set-ups, we investigated whether EFs in the range of the ones measured in the embryo could influence the navigation of chick motor and dorsal interneuron axons. We found that both axon subsets orient parallel to EFs. Yet, they significantly exhibited different sensitivities, which could contribute to elicit different trajectory choices in vivo. Next, we found that Concanavalin A (ConA) could block axon response to EF, supporting a role of cell surface receptors known to bind to ConA. Thus, we performed a pharmacological screening on ion channels and pumps that bind ConA and identified Na+/K+ ATPases as promising candidates. Preliminary knock-down experiments targeting Na+/K+ ATPases subunits suggest their contribution to CE response and axon navigation in vitro and in vivo. Collectively, our findings should provide novel insights into the mechanisms ensuring axon guidance fidelity and resilience and reveal unknown contributions of bioelectric signals and Na+/K+ ATPases during neuronal development
|
10 |
Plasticités synaptiques à court et long terme via la modulation de la forme du potentiel d'action axonal dans les réseaux corticaux / Short and long term synaptic plasticities via action potential shape modulation in cortical networksZbili, Mickael 28 October 2016 (has links)
La transmission synaptique dans les corticaux est généralement décrite comme un phénomène de « tout ou rien » ou digital. Un Potentiel d'Action (PA) est émis dans la cellule présynaptique, provoquant le relargage de neurotransmetteurs au niveau du bouton présynaptique et, en conséquence, une dépolarisation transitoire de la cellule postsynaptique (Potentiel Post-Synaptique Excitateur ou PPSE). Cependant, de nombreuses études ont démontrées que la forme du PA présynaptique dépend de l'activité sous liminaire précédant son émission. En effet, si la cellule présynaptique est dépolarisée durant 5 à 10 s avant l'émission du PA, ce dernier s'élargit, ce qui provoque une augmentation du relargage de neurotransmetteurs et de l'amplitude du PPSE. Ainsi, la transmission synaptique dépend d'un phénomène digital, le PA, dont la forme est modulée analogiquement. On parle de transmission Analogique-Digitale. L'élargissement du PA et l'augmentation de la transmission synaptique suite à une longue dépolarisation de la transmission synaptique est nommée Facilitation Analogique-Digital due à la Dépolarisation (FADD). Durant cette thèse, nous nous sommes posé 3 questions principales. Quel est le mécanisme biophysique de la FADD ? Existe-il des Facilitations Analogique Digitale dépendante de modulation de l'amplitude du PA et non de sa largeur ? Les modulations de la forme du PA sont-elles toutes à court terme (de la milliseconde à la seconde) ou existe-t-il des modulations de la forme du PA à long terme (plusieurs jours) ? Pour répondre à la première question, nous avons enregistré des paires de neurones CA3 de l'hippocampe et avons dépolarisé la cellule présynaptique durant 10 s avant l'émission du PA. Nous avons observé une FADD de 30 % qui était supprimée par le blocage pharmacologique des canaux potassiques axonaux Kv1. Ces canaux sont responsables de la phase de repolarisation du PA et ont la propriété de s'inactiver durant de longues dépolarisations. Nous en avons conclu qu'entre les neurones CA3, la FADD était due à l'inactivation des canaux Kv1 pendant la dépolarisation précédant le PA, ce qui provoque un ralentissement de la phase de repolarisation du PA et ainsi un élargissment du PA. Afin de répondre à la seconde question, nous avons enregistré des paires de neurones CA3 dans l'hippocampe. Nous avons observé qu'une courte hyperpolarisation (50 ms) du neurone présynaptique avant l'émission du potentiel d'action provoquait une augmentation de l'amplitude du PA entrainant un accroissement du relargage de neurotransmetteur et de la taille du PPSE. Nous avons nommé ce phénomène FADH pour Facilitation Analogique-Digitale induite par Hyperpolarisation. La FADH est due à récupération de l'inactivation de canaux sodiques responsables de l'amplitude du PA quand le neurone présynaptique est hyperpolarisé, ce qui augmente leur disponibilité. Enfin, pour répondre à la troisième question, nous avons bloqué la transmission synaptique entre les neurones CA3 durant 3 jours. Cela a entrainé une augmentation compensatoire de la transmission synaptique entre les paires de neurones CA3. Il est important de noter que cette augmentation compensatoire est due à la régulation négative des canaux Kv1 entrainant un élargissement du PA. Ainsi, la forme du PA peut-être moduler sur le long terme et participer à la plasticité synaptique. En conclusion, nous avons démontré que le PA n'a pas une forme fixée mais que cette dernière est modulée sur des échelles de temps allant de la dizaine de ms à plusieurs, permettant aux réseaux neuronaux d'élargir leur capacité de transfert d'information. / Generally, the synaptic transmission in cortical networks is described as an « all-or-none » or digital phenomenon. An Action Potential (AP) is emitted in the presynaptic cell entailing the release of neurotransmitters at presynaptic terminal and, consequently, a transient depolarization of the postsynaptic cell (Excitatory Post-Synaptic Potential or EPSP). However, several studies showed that the presynaptic AP shape depend on the subthreshold activity before his occurrence. Indeed, if the presynaptic cell is depolarized during 5 to 10 seconds before the AP emission, the AP is getting broader which leads to an increase in neurotransmitters release and EPSP amplitude. Therefore, the synaptic transmission depends on a digital phenomenon, the AP, whose shape is modulated in an analogic way, the so-called Analog-Digital transmission. The increase in AP width and synaptic transmission following a long depolarization of the presynaptic cell is named Analog Digital Facilitation induced by depolarization (d-ADF). During this thesis, we asked 3 main questions. What is the biophysic mechanism of d-ADF? Are there ADFs depending on AP amplitude modulation? Are the modulations of the AP shape all short term modulations (ms to s) or are there some long term AP shape modulations (days)? To answer the first question, we recorded pairs of hippocampal CA3 neurons and we depolarized the presynaptic cell during 10 ms before AP emission. We observed a d-ADF of 30 % which was suppressed by the phamarcological blockade of axonal potassium channels Kv1. These channels are responsible of the AP repolarization phase and have the property to inactivate during long depolarization. We concluded that the d-ADF at the CA3-CA3 synapse is due to inactivation of Kv1 channels during the depolarization preceding the AP which entails a slowing of the AP repolarization phase and a broadening of the AP. In order to answer the second question, we recorded pairs of hippocampal CA3 neurons. We observed that a short hyperpolarization of the presynaptic neuron (50 ms) before the AP emission entailed an increase of the AP amplitude leading to an increase of neurotransmitters release and EPSP amplitude. We named this phenomenon hyperpolarization induced Analog-Digital Facilitation (h-ADF). The h-ADF is due to the recovery from inactivation of sodium channels responsible of AP amplitude when the presynaptic neuron is hyperpolarized. Finally, to answer the third question, we blocked the synaptic transmission between CA3 neurons for 3 days. This provoked a compensatory increase of synaptic transmission between pairs of CA3 neurons. Interestingly, this compensatory increase is due to the downregulation of Kv1 channels leading to a broadening of the AP. Therefore, the AP shape can be modulated within days and participate to synaptic plasticity. In conclusion, we showed that the AP is not digital but that its shape is modulated within time scales going from the ms to several days, increasing information transfer ability of neuronal networks.
|
Page generated in 0.0524 seconds