Spelling suggestions: "subject:"axone"" "subject:"oxone""
21 |
Exploring axonal regeneration pathways to identify age-dependent genetic drivers of axonal degeneration in ALS and HDTossing, Gilles 05 1900 (has links)
Le réseau neuronal se base sur l’axone et les dendrites pour former des milliards de connexions, ce qui fait du cerveau l'une des structures les plus complexes existantes. Pour que ce réseau fonctionne bien, il doit être régulé et maintenu. Cela pose de grands défis au cerveau lors du vieillissement, particulièrement dans le cadre d’une maladie neurodégénérative. Les premiers symptômes de plusieurs maladies neurodégénératives corrèlent d’ailleurs plus fréquemment avec le début de la dégénérescence axonale qu’avec la mort cellulaire des neurones. Une meilleure compréhension des mécanismes qui régulent cette dégénérescence axonale pourrait permettre de trouver de nouveaux traitements potentiels agissant dans la phase précoce de la manifestation de ces maladies. Dans cette thèse, nous étudions les mécanismes de dégénérescence et régénérescence axonale impliqués dans la sclérose latérale amyotrophique (SLA) et la maladie de Huntington (MH) en utilisant le nématode Caenorhabditis elegans (C. elegans). Nous nous basons sur les connaissances acquises sur les régulateurs de la régénérescence axonale pour investiguer leur implication et leur potentiel thérapeutique dans la SLA et la MH. Le C. elegans permet d’étudier la dégénérescence axonale dans le cadre des maladies neurodégénératives, puisque la visualisation des axones par fluorescence en facilite l’étude in vivo. Les modèles transgéniques C. elegans de la SLA et de la MH démontrent des bris axonaux pathologiques spontanés lors du vieillissement, permettant ainsi d’évaluer les mécanismes qui influencent cette dégénérescence axonale. Le modèle C. elegans permet aussi de mener des études à plus grande échelle. Nous avons donc pu effectuer un criblage génétique d’environ 40 gènes connus pour être des inhibiteurs de la régénérescence axonale après un dommage axonal mécanique. Selon notre hypothèse, l’inhibition de gènes inhibiteurs de la régénérescence axonale devrait augmenter le potentiel régénérateur des axones et, ainsi, réduire la dégénérescence axonale caractéristique de notre modèle SLA. Effectivement, nous avons pu identifier plusieurs voies de signalisation capables de réduire la dégénérescence axonale pathologique, notamment Dual zipper kinase DLK, la régulation des phosphoinositides et la signalisation de stress des ARNt par le stalled ribosome sensor GCN1. La voie de signalisation de DLK est indispensable dans la régénérescence axonale. Il a été démontré que sa suractivation permet de stimuler la régénérescence. Nous avons prouvé que la suractivation de DLK-1 par l’inhibition de ses inhibiteurs RPM-1 et FSN-1 réduit la dégénérescence axonale ainsi que la paralysie dans le contexte de la SLA. Pour évaluer la meilleure approche thérapeutique, nous avons investigué plus en détail les différents membres de cette voie de signalisation. Ainsi, nous avons trouvé que l’inhibition génétique et, surtout pharmacologique, de PARP1 et PARP2 peut réduire la dégénérescence axonale dans nos modèles de la SLA et de la MH. Les inositol polyphosphate phosphatases (INPP) sont des régulateurs des messagers secondaires d’inositol phosphates et de phosphatidylinositols, qui agissent dans la même voie de signalisation que PTEN, un inhibiteur de régénérescence axonale bien documenté. Dans nos études, nous avons identifié des nouvelles approches et cibles génétiques afin de réduire la dégénérescence axonale reliée à l’ALS et la MH.
En résumé, nous avons identifié de multiples gènes qui agissent dans des voies de signalisation qui régulent la dégénérescence axonale, spécifiquement lors du vieillissement, dans le cadre de l’ALS et la MH. Il est primordial de mieux comprendre la signalisation intrinsèque qui régule l’axonopathie dans les maladies neurodégénératives pour établir de nouvelles approches thérapeutiques. Dans cette thèse, nous avons donc identifié plusieurs cibles thérapeutiques potentielles dans la voie de signalisation de DLK, et dans la voie de signalisation des phosphatidylinositols. / The neural network relies on axons and dendrites to form billions of connections, making the brain one of the most complex structures. These connections are both stable and highly dynamic, keeping the network in place while allowing connections to be modulated as needed. This network must be perfectly regulated and maintained for proper functioning, which can be a great challenge for the brain during aging and in the context of neurodegenerative diseases. Indeed, most neurodegenerative diseases show some form of degeneration of their axonal projections in the early stages. Increasingly, it is observed that the first symptoms of many neurodegenerative disorders correlate with the onset of axonal degeneration rather than cell death of neurons. A better understanding of the mechanisms regulating this axonal degeneration could lead to new treatments that could act in this particularly interesting therapeutic window. In this thesis, we aimed to study the genetic mechanisms of axonal degeneration involved in amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD). More specifically, we investigated if axonal regeneration-associated genes can be targeted to reduce or even repair the age-dependent axonal damage observed in ALS and HD. To do this, we used Caenorhabditis elegans (C. elegans) models of ALS and HD, as they reproduce age-dependent axonal degeneration well. In addition, the use of fluorescent markers allows the visualization of axons in living animals, which makes it a unique model to study in vivo the dynamics of axonal damage and degeneration. We hypothesized that the stimulation of axonal regeneration pathways should increase the regenerative potential of axons and thus reduce the axonal degeneration characteristic of our ALS and HD models. Another advantage of using C. elegans is the possibility of large-scale genetic screens, allowing us to perform an RNAi-based genetic screen of 40 genes known as inhibitors of axonal regeneration. We identified multiple genes that act as drivers of axonal degeneration. Further analysis allowed us to identify an age-specific signaling network that regulates axonal degeneration through several main pathways, such as the Dual zipper kinase DLK pathway, the regulation of phosphatidylinositol phosphate, and the tRNA-related GCN1 stress response. The DLK signaling pathway is essential for axonal regeneration, and its overactivation has been shown to stimulate regeneration. We demonstrated that overactivation of DLK-1 by inhibiting its inhibitors RPM-1 and FSN-1 reduces axonal degeneration and paralysis in ALS. Furthermore, amongst the DLK pathway, we identified that genetic and pharmacological inhibition of PARP1/2 can consistently reduce axonal degeneration in our models of ALS and HD. Furthermore, we identified that the dysregulation of membrane-bound phosphoinositides is another major regulator of age-dependent axonal degeneration. We identified therapeutic targets similar to PTEN, a well-documented inhibitor of axonal regeneration and modulator of neurodegeneration. In our studies, we identified an alternative therapeutic target to PTEN and a new approach to trat ALS and HD-related axonal degeneration.
In summary, we have identified multiple genes acting in an age-dependent network that drives axonal degeneration in ALS and HD. A better understanding of the intrinsic signaling that regulates axonopathy in neurodegenerative diseases is essential to establish new therapeutic approaches. In this thesis, we identified several potential therapeutic targets in the DLK signaling pathway and in the phosphoinositide signaling pathway.
|
22 |
Nouveaux aspects de la fonction axonale dans le néocortex et l'hippocampe de ratBialowas, Andrzej 20 September 2012 (has links)
Le neurone est une cellule polarisée qui se divise en deux compartiments spécialisés : le compartiment somato-dendritique et le compartiment axonal. Généralement, le premier reçoit l'information en provenance d'autres neurones et le second génère un message en sortie lorsque la somme des entrées dépasse une valeur seuil au segment initial de l'axone. Ce signal de nature discrète appelé potentiel d'action (PA) est propagé activement jusqu'à la terminaison synaptique où il déclenche la transmission chimique de l'information. Cependant, la fonction axonale ne se résume pas à la simple transmission des séquences de PA à l'image d'un câble de télégraphe. L'axone est également capable de transmettre des variations continues de signaux électriques infraliminaires dit analogues et les combiner avec l'information digitale véhiculée par le PA. J'ai consacré la majorité de mon travail de thèse à l'étude de ce nouvel aspect de la fonction axonale dans le cadre de la transmission synaptique entre les neurones pyramidaux au sein du réseau excitateur CA3 de l'hippocampe de rat. Les résultats obtenus à partir d'enregistrements de paires de neurones pendant ma thèse mettent en évidence deux sortes de signalisation analogue et digitale qui aboutissent à la facilitation de la transmission synaptique. La facilitation analogue-digitale (FAD) a été observée lors d'une dépolarisation prolongée, mais également à la suite d'une hyperpolarisation transitoire au niveau du corps cellulaire. Ce sont deux versants d'une même plasticité à court-terme qui découle de l'état biophysique des canaux ioniques sensibles au voltage étant à l'origine du PA. / The neuron is a polarised cell divided into two specialized compartments: the somato-dendritic and the axonal compartment. Generally, the first one receives information arriving from other neurones and the second generates an output message, when the sum of inputs exceeds a threshold value at the axon initial segment. This all-or-none signal, called the action potential (AP) is propagated actively to the synaptic terminal where it triggers chemical transmission of information. However, axonal function is not limited to transmission of AP sequences like a telegraph cable. The axon is also capable of transmitting continuously changing sub-threshold electric signals called analogue signals and to combine them with the digital information carried by the AP. I devoted the majority of my thesis work to the study of these novel aspects of axonal function in the framework of synaptic transmission between pyramidal neurons in the CA3 excitatory network of the rat hippocampus. The results obtained through paired recordings brought to light two kinds of analogue and digital signalling that lead to a facilitation of synaptic transmission. Analogue-digital facilitation (ADF) was observed during prolonged presynaptic depolarization and also after a transient hyperpolarization of the neuronal cell body. These are two sides of the same form of short-term synaptic plasticity depending on the biophysical state of voltage gated ion channels responsible for AP generation. The first variant of ADF induced by depolarization (ADFD) is due to AP broadening and involves Kv1 potassium channels.
|
23 |
Konditionale Inaktivierung von Pten in einem neuen Mausmodell für tomaculöse Neuropathien / Conditional inactivation of Pten in a new mouse model of tomaculous neuropathiesOltrogge, Jan Hendrik 01 February 2017 (has links)
In der Entwicklung des peripheren Nervensystems formen Schwannzellen eine Myelinscheide um Axone mit einem Durchmesser von mehr als 1 μm durch die Bildung multipler kompakter Membranschichten. Voraussetzung einer optimalen Nervenleitgeschwindigkeit ist dabei ein physiologisches Verhältnis der Dicke der Myelinscheide zu dem jeweiligen Axondurchmesser. Eine zentrale Rolle spielt dabei der axonale EGF-like growth factor NRG1 Typ III, der ErbB2/3- Rezeptoren der Schwannzelle bindet. Der PI3K-AKT-Signalweg ist ein bekannter intrazellulärer Effektor des ErbB2/3-Rezeptors und wurde bereits mit dem Prozess der Myelinisierung in Verbindung gebracht.
Um die spezifische Funktion des PI3K-AKT-Signalwegs in Schwannzellen zu erforschen, generierten wir mit Hilfe des Cre/LoxP-Systems Mausmutanten, die eine zellspezifische Inaktivierung des Gens Phosphatase and Tensin Homolog (Pten) in myelinisierenden Gliazellen aufweisen (Pten-Mutanten). Der Verlust der Lipidphosphatase PTEN führte zu einer Anreicherung ihres Substrates, des second messenger Phosphatidyl-(3,4,5)-Trisphosphat (PIP3), und damit zu einer gesteigerten Aktivität des PI3K-AKT-Signalwegs in den Schwannzellen der Pten-Mutanten.
Wir beobachteten in den Pten-Mutanten eine ektopische Myelinisierung von unmyelinisierten C- Faser-Axonen sowie eine Hypermyelinisierung von Axonen bis 2 μm Durchmesser. Bei Axonen über 2 μm Durchmesser kam es zu Myelinausfaltungen und fokalen Hypermyelinisierungen (Tomacula) anliegend an Regionen des unkompakten Myelins (Paranodien und Schmidt- Lantermann-Inzisuren). Weiterhin bildeten die mutanten Remak-Schwannzellen unkompakte Membranwicklungen um nicht-myelinisierte C-Faser-Axone und um Kollagenfaserbündel aus („Remak-Myelin“). Sowohl in den Regionen unkompakten Myelins als auch in Remak- Schwannzellen konnte eine erhöhte Aktivität des PI3K-AKT-Signalwegs nachgewiesen werden. Vermutlich setzt die Anreicherung von PIP3 mit Überaktivierung des PI3K-AKT-Signalwegs in den mutanten Gliazellen einen zellautonomen Prozess der Umwicklung von Axonen in Gang. Die zusätzliche Bildung von „Remak-Myelin“ um Kollagenfasern, die keine Membranoberfläche besitzen, weist darauf hin, dass dieser Prozess nicht von einer bidirektionalen axo-glialen Kommunikation abzuhängen scheint.
Die beobachteten Tomacula und Myelinausfaltungen zeigten Ähnlichkeiten mit Mausmodellen für hereditäre Neuropathien des Menschen, wie HNPP und CMT4B. Wir vermuten, dass PTEN im unkompakten Myelin unkontrolliertes Membranwachstum verhindert und dass eine gestörte Balance von Phosphoinositiden einen Pathomechanismus von tomaculösen Neuropathien darstellt. Somit identifizieren wir den PI3K-AKT-Signalweg als ein mögliches Ziel zukünftiger Therapiekonzepte für hereditäre Neuropathien des Menschen.
|
Page generated in 0.0507 seconds