• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 359
  • 55
  • 48
  • 31
  • 8
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 568
  • 568
  • 200
  • 127
  • 111
  • 105
  • 91
  • 91
  • 87
  • 79
  • 71
  • 69
  • 63
  • 61
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Deriving Ultralight Dark Matter Limits with a Prototype Array of Mechanical Accelerometers

Abigail Rae Hickin (15987782) 13 June 2023 (has links)
<p>Motivated by the future prospects of the Windchime project, we show that even a small prototype array of 7 commercial accelerometers can be used to calculate dark matter limits for the well-known B − L coupled dark photon. As a member of the ultralight sector, the dark photon would be observed in high occupancy as a persistent plane wave characterized by de Broglie wavelength and coupling to the standard model via a hypothesized baryon minus lepton quantum number, g_B−L. Such an interaction can be probed by measuring the differential force or acceleration between two bodies of differing B −L charge-to-mass ratios. This is accomplished for a 7 sensor array of MEMS accelerometers by rigidly coupling all the sensors to a material of known B − L charge. Using a log-likelihood ratio test and Fourier transformed data from the prototype array, we are able to set a limit on g_B−L ∼ 10^−11 within a mass range of 10^{−13}−10^{−12}eV . Setting these noncompetitive limits with real data serves as a proof-of-principle demonstration of the limit-setting procedure used in Windchime future projections for B − L coupled ultralight dark matter. Additionally, this basic setup could be used for future studies on the properties of a detector array. </p>
352

Multiwavelength Studies Of Gamma-Ray Emitting Radio Galaxies / Multi-Wellenlängen Studien von Gammastrahlung emittierende Radiogalaxien

Saxena, Sheetal January 2020 (has links) (PDF)
Although the contribution to the Isotropic Gamma-Ray Background (IGRB) from unresolved extragalactic objects has been studied for many years, its exact composition and origin are as of yet unknown. It is suspected that diffuse processes such as dark matter annihilation contribute to the total IGRB, as well as unresolved gamma-ray emission from Active Galactic Nuclei (AGN), including radio galaxies. Radio galaxies are a source class that emit strongly at radio wavelengths, some of which have also been detected at gamma-ray wavelengths by the Fermi Large Area Telescope (Fermi-LAT), and by very high energy gamma-ray Cherenkov telescopes. It is thought that due to the orientation of their jets, radio galaxies are detected less numerously at gamma-ray energies than blazars. Furthermore, only a small number of radio galaxies have been detected at gamma-ray energies though it is considered that others do as well. It is for these reasons that gamma-ray emitting radio galaxies, an interesting and elusive class of objects, are selected for investigation in this work. In order to reach the goal of better understanding diffuse processes, it is necessary to model the radio galaxy spectral energy distributions (SEDs). As AGN emission is variable with respect to time, it is critical to use simultaneously collected observations. Calculation of the SED based on simultaneous, multiwavelength data across the electromagnetic spectrum produces a reasonably accurate representation of the state of an object in a given time range. The gamma-ray emitting radio galaxies M 87, NGC 1275, Pictor A, and Centaurus A are selected here based on having been detected in very high energy gamma-rays by Cherenkov telescopes, as well as in other wavelengths. A uniquely consistent analysis approach is applied, in which each radio galaxy is analyzed the same way using simultaneously collected data. This approach sets it apart from other studies. Fermi-LAT raw data for each source in the sample is analyzed in time ranges which directly overlap the very high energy gamma-ray Cherenkov observations, as well as several other wavelength ranges. A synchrotron self-Compton (SSC) model is applied, which provides accurate treatment of synchrotron and inverse-Compton processes occurring in the jets of AGN, while estimating physical characteristics of the source. It is found that the spectra of M 87, NGC 1275, Pictor A, and Centaurus A can be well described by the same SSC model, producing values for the physical characteristics such as the doppler factor and magnetic field, which are relatively consistent with each other. In order to characterize the diffuse emission from dark matter self-annihilation, the radio galaxy SEDs are also fit with a dark matter model, resulting in an estimated dark matter particle mass of around 4.7 TeV which lies within predicted ranges. The highly dense regions near the black holes of AGN provide the optimal conditions for detecting these signatures. It is also found here that discrepancies between the expected emission and the observed emission in the spectra of some radio galaxies can be explained using the combined SSC and dark matter model. As emission from dark matter annihilation is expected to remain steady with respect to time, a key feature of this work is the novelty of the combined SSC and dark matter model, and the finding that dark matter characteristics may be revealed through similar multiwavelength analyses during future low emission states of the AGN. The radio galaxy sample is then extended to include all gamma-ray emitting radio galaxies detected by the Fermi-LAT, and a calculation of the core radio, total radio, and gamma-ray luminosities is followed through. A future step in extending this work would be to estimate the gamma-ray luminosity function of radio galaxies and their percent contribution to the total IGRB, based on the widely agreed upon assumption that a reasonable estimate of the gamma-ray luminosity function of a population can be attained by appropriately scaling its radio luminosity function, as gamma-ray luminosities and radio luminosities are strongly linearly correlated. This work has also provided the basis for such a calculation by outlining the theory and initial steps. It is the hope that the vast scope of the gathered data, its simultaneity, and the use of consistent analysis methods across the sample, will provide an improved foundation for a future calculation of the contribution of this population to the IGRB, as well as encourage stricter requirements for multiwavelength studies. / Der Ursprung, sowie die exakte Zusammensetzung des isotropischen Gammastrahlen-Hintergrunds (IGRB), sind trotz jahrelanger Studien über den Einfluss unaufgelöster extragalaktischer Objekte, nicht abschließend geklärt. Es wird für möglich gehalten, dass diffuse Prozesse, wie z.B. die Annihilation dunkler Materie, sowie bisher nicht detektierte Gammastrahlen-Emission aus aktiven Galaxiekernen (AGN), wie zum Beispiel Radiogalaxien, dazu beitragen. Radiogalaxien gehören zu der Gattung der Quellen, die stark im Radiowellenbereich emittieren. Einige dieser Galaxien wurden auch im Wellenlängenbereich von Gammastrahlung mittels des Fermi Large Area Telescope (Fermi-LAT) und für sehr energiereiche Gammastrahlung mittels Cherenkov-Detektoren nachgewiesen. Es wird davon ausgegangen, dass die kleinere Anzahl an nachgewiesenen Radiogalaxien im Gammastrahlenbereich, verglichen mit der Anzahl an nachgewiesenen Blazaren, auf die Orientierung ihrer Jets zurückzuführen ist. Des Weiteren wurde bisher nur eine kleine Anzahl an Radiogalaxien im Energiebereich der Gammastrahlung nachgewiesen, obwohl davon auszugehen ist, dass der Nachweis auch für weitere Galaxien möglich ist. Aus diesen Gründen werden Gammastrahlung emittierende Radiogalaxien, eine interessante und schwer auffindbare Klasse an Objekten, zur Untersuchung im Rahmen dieser Arbeit ausgewählt. Zur Verbesserung des Verständnisses diffuser Prozesse ist eine Modellierung der spektralen Energiedichteverteilung (SED) notwendig. Da die Emission von AGN zeitlich variiert, ist es wichtig simultan aufgezeichnete Daten für die Analyse zu verwenden. Die Berechnung der spektralen Energiedichteverteilung, basierend auf zeitgleich aufgezeichneten Daten für eine Vielzahl an Wellenlängen des elektromagnetischen Spektrums, liefert eine hinreichend genaue Beschreibung des Zustandes eines Objektes innerhalb eines gegebenen Zeitraumes. Diese Arbeit konzentriert sich auf die Gammastrahlung emittierenden Radiogalaxien M 87, NGC 1275, Pictor A und Centaurus A, da diese mittels Cherenkov-Teleskopen im Bereich hochenergetischer Gammastrahlung, sowie auch in anderen Wellenlängenbereichen, nachgewiesen wurden. Es wird eine, in dieser Form erstmals angewandte, konsistente Untersuchung durchgeführt, bei der jede Radiogalaxie auf identische Weise, mittels zeitgleich aufgezeichneter Daten, analysiert wird. Dieser Ansatz unterscheidet diese Arbeit von vergleichbaren Studien. Die Fermi-LAT Rohdaten für jede Quelle werden für die Zeiträume analysiert, in denen diese direkt mit der Beobachtung hochenergetischer Gammastrahlung durch Cherenkov-Teleskope, sowie darüber hinaus mit weiteren Wellenlängenbereichen, überlappen. Das Synchrotron Self-Compton (SSC) Modell wird der Analyse zu Grunde gelegt und ermöglicht eine akkurate Beschreibung, der im AGN Jet auftretenden, Synchrotron Prozesse und inversen Compton-Streuung, sowie die Abschätzung physikalischer Charakteristiken der Quelle. Es stellt sich heraus, dass die Spektren von M87, NGC 1275, Pictor A und Centaurus A mit demselben SCC Modell gut beschrieben werden können und relativ konsistente Werte für physikalische Größen, wie zum Beispiel den Doppler-Faktor oder die Magnetfeldstärke liefern. Zur genaueren Charakterisierung der aus der Annihilation dunkler Materie resultierenden diffusen Emission, werden die SED der Radiogalaxien zusätzlich mit einem Modell für dunkle Materie gefittet. Die daraus resultierende, geschätzte Teilchenmasse für dunkle Materie liegt mit 4.7 TeV innerhalb des vorhergesagten Bereiches. Die hochdichten Regionen in der Nähe der schwarzen Löcher des AGN liefern ideale Voraussetzungen zur Detektion dieser Signaturen. Des Weiteren wurde herausgefunden, dass etwaige Unterschiede zwischen der erwarteten und der beobachteten Emission in den Spektren einiger Radiogalaxien mittels einer Kombination aus SSC Modell und dunkler Materie Modell erklärt werden können. Unter der Annahme, dass die der Annihilation dunkler Materie zu Grunde liegende Emission zeitlich konstant bleibt, stellen zum einen die Kombination des SSC- und dunkler Materie Modells, sowie die Erkenntnis, dass Charakteristiken dunkler Materie durch ähnliche Multi-Wellenlängen-Experimente während zukünftiger, emissionsarmer Zustände gefunden werden können, die wesentlichen Ergebnisse dieser Arbeit dar. Das Sample der Radiogalaxien wird anschließend erweitert, so dass es alle vom Fermi-LAT detektierte und Gammastrahlung emittierende Radiogalaxien umfasst. Im Anschluss daran wird eine Berechnung der aus dem Kernbereich stammenden, und der totalen Radioluminosität, sowie der Gammastrahlungs-Luminosität durchgeführt. Ein künftiger Schritt zur Erweiterung dieser Arbeit wäre die Abschätzung der Gammastrahlungs-Luminositätsfunktion von Radiogalaxien und deren prozentualer Beitrag zum totalen IGRB, basierend auf der weitläufig akzeptierten Annahme, dass eine vernünftige Abschätzung der Gammastrahlungs-Luminositätsfunktion einer Population mittels einer angemessenen Skalierung ihrer Radio-Luminositätsfunktion erreicht werden kann, da die Gammastrahlungs-Luminosität und die Radioluminosität stark miteinander korrelieren. Diese Arbeit hat die hierfür benötigten Grundlagen für diese Art von Berechnung gelegt, indem sie die Theorie und die ersten Schritte darlegt. Es ist die Hoffnung, dass der große Umfang der zusammengetragenen Daten, deren Simultanität, und die Anwendung einer konsistenten Analysemethode für das gesamte Sample eine verbesserte Grundlage für zukünftige Berechnungen des Beitrages dieser Population zum IGRB leistet, sowie strengere Anforderung für Multi-Wellenlängen-Experimente.
353

Constraints on Strongly Interacting Dark Matter

Cappiello, Christopher 19 October 2021 (has links)
No description available.
354

Modeling the Dark Matter of Galaxy Clusters Using the Tensor-Vector-Scalar Theory of Alternate Gravity

Ragozzine, Brett 10 June 2013 (has links)
No description available.
355

In Search of Empty Places: Voids in the Distribution of Galaxies

Bucklein, Brian K. 06 July 2010 (has links) (PDF)
We investigate several techniques to identify voids in the galaxy distribution of matter in the universe. We utilize galaxy number counts as a function of apparent magnitude and Wolf plots to search a two- or three-dimensional data set in a pencil-beam fashion to locate voids within the field of view. The technique is able to distinguish between voids that represent simply a decrease in density as well as those that show a build up of galaxies on the front or back side of the void. This method turns out to be primarily useable only at relatively short range (out to about 200 Mpc). Beyond this distance, the characteristics indicating a void become increasingly difficult to separate from the statistical background noise. We apply the technique to a very simplified model as well as to the Millennium Run dark matter simulation. We then compare results with those obtained on the Sloan Digital Sky Survey. We also created the Watershed Void Examiner (WaVE) which treats densities in a fashion similar to elevation on a topographical map, and then we allow the "terrain" to flood. The flooded low-lying regions are identified as voids, which are allowed to grow and merge as the level of flooding becomes higher (the overdensity threshold increases). Void statistics can be calculated for each void. We also determine that within the Millennium Run semi-analytic galaxy catalog, the walls that separate the voids are permeable at a scale of 4 Mpc. For each resolution that we tested, there existed a characteristic density at which the walls could be penetrated, allowing a single void to grow to dominate the volume. With WaVE, we are able to get comparable results to those previously published, but often with fewer choices of parameters that could bias the results. We are also able to determine the the density at which the number of voids peaks for different resolutions as well as the expected number of void galaxies. The number of void galaxies is amazingly consistent at an overdensity of −0.600 at all resolutions, indicating that this could be a good choice for comparing models.
356

Thesis_HC_04242023.pdf

Haichuan Cao (15347563) 26 April 2023 (has links)
<p>  Present WIMP Dark Matter search strategies are mainly focused on possible direct detection through elastic or inelastic scatterings on atomic nuclei, or with electrons. This approach<br> becomes insensitive to M(DM) < 10 GeV. Indirect DM detection refers to the search for DM-DM or DM-M annihilation, decay debris from DM particles, or other particle production,<br> resulting in detectable species. </p> <p><br>    New physics processes, initiated by cosmic ray or dark matter interactions may be observable in underground indirect search experiments by excess high multiplicity neutron<br> production in nuclear targets. Even for M(DM) < 10 GeV, DM-M interaction is capable of<br> producing large signals, >200 neutrons if the energy is deposited in a Pb target.</p> <p><br></p> <p>  The NMDS-II detector, located at an underground laboratory within the Pyhasälmi<br> complex metal mine in central Finland, collated data for 6504 ± 1 hours at 583 m.w.e.<br> and for 1440 ± 1 hours at 1166 m.w.e.. The detector system consists of a 30 cm cube<br> Pb-target surrounded by 60 He-3 proportional tubes and a two layer Geiger Counter muon<br> detection system. The lead target is used to interact with potential dark matter particles, and<br> neutron numbers are measured with He-3 tubes. The neutron event multiplicity production is<br> compared to Geant4 simulations, starting with the well measured absolute muon momentum<br> and angular distribution flux rate at sea level, then propagating the muon flux through rock<br> while preserving the momentum-angular correlation to a depth 4m above the the detector at<br> the two depth locations. The muon flux modeling is compared to the uncorrelated Miyake<br> model at each depth as verification of the muon propagation simulation. Finally, the Geant4<br> fully simulates the passage of the muon and its induced showers through a model universe<br> 10000 m^2 x 12 m depth, and the simulated response of the detector to the calculated muon<br> flux, is compared with the data. <br>  </p> <p>  The Geant4 prediction and the observed data neutron event multiplicity distributions<br> have matching power law shapes, k × n^(-p), and do not have exponential shapes. For the<br> data collected at 583 m.w.e., p=2.36±0.10 with χ2/DoF = 0.76 and for the simulation<br> p=2.34±0.01 with χ2/DoF = 1.05. At 1166 m.w.e., p=2.29±0.007 for the simulation with  χ2/DoF = 1.16. And for the data the collection with only 6 detected events above multiplicity 5, yields p=2.50 ± 0.35 predicted by the Maximum Likelihood Estimatation method. </p> <p><br></p> <p>  The DM acceptance as a function of mass is found using a proton-Pb spallation model.<br> The dark matter mass is assumed to be equal to the proton kinetic energy and to interact<br> uniformly over the volume of the lead target. The number of excess events is found to be<br> -6.1 ± 5.1, that is no excess events are observed. The upper limit with 90% confidence<br> level is then found assuming 2.3 events. The Poisson estimation then yielding search limits<br> 1.1×10^(-44) cm^(-2) for 10 GeV deposited energy, 1.9×10^(-45) cm^(-2) at 1 GeV and 3.0×10^(-45) cm^(-2) for 500 MeV deposited energy and no acceptance at 100 MeV.<br> </p> <p>    An indirect dark matter search was conducted based on DM-M interactions depositing<br> energy in a Pb-target allowing DM masses to be probed in a region 100 MeV < M(DM) <<br> 10 GeV not accessible to direct dark matter searches. Limits are placed on DM-M energy<br> deposition independent of the DM-M interaction. <br>  <br>  <br>  <br>  </p>
357

Perturbative Electroweak Corrections in the Standard Model and Beyond

Polonsky, Zachary 22 August 2022 (has links)
No description available.
358

The onset and regulation of star formation in the lowest mass dark matter halos

Pereira-Wilson, Matthew 02 September 2022 (has links)
We use the APOSTLE suite of cosmological simulations to examine the role of the cosmic ionizing background in regulating star formation (SF) in low-mass LCDM halos. In agreement with earlier work, we find that, after reionization, SF can only proceed in halos whose mass exceeds a redshift-dependent ``critical'' virial mass determined by the structure of LCDM halos and the thermal pressure of UV-heated gas. This critical mass increases from Mcrit~10^8 Msun at z~11$ to ~10^9.7 Msun at z=0, roughly following the average mass growth history of halos in that mass range. This implies that most halos above or below critical at present have remained so since early times. In particular, the halos of most galaxies today were already above-critical (and thus forming stars) at high redshift, providing a simple explanation for the ubiquitous presence of ancient stellar populations in dwarfs, regardless of luminosity. It also implies that Mcrit today represents a ``threshold'' mass below which the fraction of ``dark'' halos increases steeply. Sub-critical halos may still host luminous galaxies if they were above-critical at some point in the past. SF ceases if a halo falls into the sub-critical regime; depending on each halo's accretion history this can occur over a wide range of times, explaining why SF in many dwarfs seems to continue well past the reionization epoch. It also suggests a tantalizing explanation for the episodic nature of SF in some dwarfs, which, in this interpretation, would be linked to temporary halo excursions above and below the critical boundary. In the simulations, Mcrit(z) cleanly separates star-forming from non-star-forming systems at all redshifts, indicating that the ionizing UV background, and not stellar feedback, is what regulates the beginning and the end of SF in the faintest dwarfs. Galaxies in sub-critical halos should make up a sizable population of faint field dwarfs, distinct from those in more massive halos because of their lack of ongoing star formation. Although few such galaxies are known at present, the discovery of this population would provide strong support for our results. / Graduate
359

Search for axion dark matter using solid state nuclear magnetic resonance and superconducting magnetometers

Adam, Janos 07 November 2023 (has links)
One of the major unsolved questions of modern physics is the nature of dark matter, whose existence is inferred from astronomical observations. There are numerous potential dark matter candidates: one strong contender is the axion. The axion was initially proposed to solve the strong CP problem of quantum chromodynamics but it was later realized that its properties make it simultaneously a good candidate for dark matter. Axions couple to the Standard Model in various ways. In this thesis, we describe experiments which exploit the axion coupling gd to the nuclear electric dipole moment (nEDM). In particular, in the presence of an external electric field, the axion perturbs the magnetization of an ensemble of nuclear spins due to this coupling. In the CASPEr-Electric experiment, the axion dark matter interacts with the nuclear spins of 207Pb and the effective electric field is provided by a ferroelectric crystal in which the 207Pb is embedded. CASPEr-Electric is a resonant search where axion dark matter would perturb the equilibrium magnetization of the 207Pb nuclear spin ensemble. The experiment is calibrated through pulsed nuclear magnetic resonance (NMR) experiments on the 207Pb nuclei. The first generation of the experiment demonstrated the feasibility of this method and established limits on the nEDM coupling in the mass range of 162-166 neV (Compton frequency 39-40 MHz). This thesis primarily focuses on the second generation of the CASPEr-Electric experiment, which probed axion dark matter at a lower frequency range of 4 - 5 MHz using superconducting quantum interference devices (SQUIDs). Our search established upper limits on the coupling for axion masses in the range 19.5-20.5 and 21.5-22 neV (4.6 - 5.0 and 5.2 - 5.3 MHz). The upper bound on the nEDM coupling is |gd| < 4 x 10-4, GeV-2 with 95 % confidence. / 2024-11-07T00:00:00Z
360

Few-electron signals and their implications in liquid xenon time projection chambers

Amanda Leigh Depoian (14210249) 07 December 2022 (has links)
<p>The energy threshold of liquid xenon detectors is driven by the requirements of observing a scintillation signal as well as a large ionization signal. Observing both allows powerful background rejection, but limits the sensitivity below O(10 GeV/c<sup>2</sup>). Removing the requirement of having a scintillation signal, the threshold for light dark matter can be pushed lower. One limitation to the light dark matter search in XENON1T was single- and few-electron backgrounds that were not well understood. A dedicated analysis was performed to understand these backgrounds and event selections were developed to mitigate them.  This thesis presents details of the characterization and results from a search for light dark matter using only the single- and few-electron ionization signals in the XENON1T detector.</p> <p><br></p> <p>These liquid xenon detectors are leading in sensitivity to search for rare events. With various detector upgrades, XENONnT has improved sensitivity to low-energy interactions with signals as low as a single detected electron. This allows XENONnT to be able to detect neutrinos of all flavors from potential Galactic supernovae via coherent elastic neutrino-nucleus scattering (CEvNS). This thesis presents an overview of the capability of XENONnT to detect supernova neutrinos via CEvNS. This allows XENONnT to be the first direct detection dark matter experiment to directly participate in the SuperNova Early Warning System.</p>

Page generated in 0.0223 seconds