• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 42
  • 26
  • 20
  • 18
  • 18
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 277
  • 277
  • 133
  • 72
  • 68
  • 63
  • 58
  • 58
  • 52
  • 51
  • 46
  • 41
  • 34
  • 33
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Design of Monolithic Step-Up DC-DC Converters with On-Chip Inductors

Hasan, Ayaz 26 August 2011 (has links)
This thesis presents the design of a step-up DC-DC converter with on-chip coupled inductors. Circuit theory of DC-DC converters in general is presented, after which a mathematical model of a step up converter is developed. A circuit implementation optimized from results of the mathematical model follows. For a completely integrated step-up converter, the inductor size is reduced by increasing the frequency of operation and using a circuit topology that employs coupled inductors. Spiral inductors are also studied to achieve maximum quality factor and inductance. A fast PWM control system is used to regulate the high-frequency converter. The fabrication was done in standard TSMC 0.18-$\mu$m digital CMOS process for four circuits, including one with a conventional topology and the others with a coupled inductor topology with varying inductor geometries. Measurement results from a fabricated prototype have been presented, demonstrating the functionality of the four circuits with coupled inductors on the fabricated chip and the improvement of the coupled solution over the conventional design. It is demonstrated that the circuits with coupled inductors have a significant improvement in performance based on conversion ratio and efficiency. Finally, the design process is evaluated and recommendations are made for future work. Furthermore, a new self-oscillating and robust control system is proposed that enables simpler and more efficient regulation for high-frequency converters such as one developed for this thesis.
22

EFFICIENT CONTROL OF THE SERIES RESONANT CONVERTER FOR HIGH FREQUENCY OPERATION

Tschirhart, Darryl 10 September 2012 (has links)
Improved transient performance and converter miniaturization are the major driving factors behind high frequency operation of switching power supplies. However, high speed operation is limited by topology, control, semiconductor, and packaging technologies. The inherent mitigation of switching loss in resonant converters makes them prime candidates for use when the limits of switching frequency are pushed. The goal of this thesis is to address two areas that practically limit the achievable switching frequency of resonant topologies. Traditional control methods based on single cycle response are impractical at high frequency; forcing the use of pulse density modulation (PDM) techniques. However, existing pulse density modulation strategies for resonant converters in dc/dc applications suffer from: • High semiconductor current stress. • Slow response and large filter size determined by the low modulating frequency. • Possibly operating at fractions of resonant cycles leading to switching loss; thereby limiting the modulating frequency. A series resonant converter with variable frequency PDM (VF-PDM) with integral resonant cycle control is presented to overcome the limitations of existing PDM techniques to enable efficient operation with high switching frequency and modulating frequency. The operation of the circuit is presented and analyzed, with a design procedure given to achieve fast transient performance, small filter size, and high efficiency across the load range with current stress comparable to conventional control techniques. It is shown that digital implementation of the controller can achieve favourable results with a clock frequency four times greater than the switching frequency. Driving the synchronous rectifiers is a considerable challenge in high current applications operating at high switching frequency. Resonant gate drivers with continuous inductor current experience excessive conduction loss, while discontinuous current drivers are subject to slow transitions and high peak current. Current source drivers suffer from high component count and increased conduction loss when applied to complementary switches. A dual-channel current source driver is presented as a means of driving two complementary switches. A single coupled inductor with discontinuous current facilitates low conduction loss by transferring charge between the MOSFET gates to reduce the number of semiconductors in the current path, and reducing the number of conduction intervals. The operation of the circuit is analyzed, and a design procedure based on minimization of the total synchronous rectifier loss is presented. Implementation of the digital logic to control the driver is discussed. Experimental results at megahertz operating frequencies are presented for both areas addressed to verify the theoretical results. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2012-09-09 20:43:56.997
23

Mixed-source charger-supply CMOS IC

Kim, Suhwan 27 August 2014 (has links)
The proposed research objective is to develop, test, and evaluate a mixer and charger-supply CMOS IC that derives and mixes energy and power from mixed sources to accurately supply a miniaturized system. Since the energy-dense source stores more energy than the power-dense source while the latter supplies more power than the former, the proposed research aims to develop an IC that automatically selects how much and from which source to draw power to maximize lifetime per unit volume. Today, the state of the art lacks the intelligence and capability to select the most appropriate source from which to extract power to supply the time-varying needs of a small system. As such, the underlying objective and benefit of this research is to reduce the size of a complete electronic system so that wireless sensors and biomedical implants, for example, as a whole, perform well, operate for extended periods, and integrate into tiny spaces.
24

Organically Grown Microgrids: the Development and Simulation of a Solar Home System-based Microgrid

Unger, Kurtis January 2012 (has links)
The United Nations has declared 2012 the ``International Year of Sustainable Energy for All''. A substantial portion of the world's population (some 1.3 billion people) currently live without electricity and development efforts to reach them are progressing relatively slowly. This thesis follows the development of a technology which can enable community owned and operated microgrids to emerge based solely on the local supply and demand of that community. Although this thesis ends with the technical analysis of a DC/DC converter, there is a significant amount of background to cover in order to properly understand the context in which it will be used. After providing an introduction into typical rural electrification efforts and pointing out some of the shortcomings of these projects, this thesis introduces some cutting edge efforts which combine solar home system technology with cellular technology and discusses the benefits of such a marriage of technology. Next, the research proposes some tweaks to this novel technology and provides a high-level economic demonstration of the spread of solar home systems in a community based on these modifications. It then takes this concept even further and proposes the addition of a DC/DC converter which could turn these individual solar home systems into a proper microgrid. This thesis elaborates on the development process of simulating such a microgrid in PSCAD, including the individual components of a solar home system and the specific task of designing the converter which would form the backbone of the proposed microgrid. The final simulations and analyses demonstrate a microgrid that is both technically and economically feasible for developing world applications.
25

Digitally Controlled Average Current Mode Buck Converter

January 2011 (has links)
abstract: During the past decade, different kinds of fancy functions are developed in portable electronic devices. This trend triggers the research of how to enhance battery lifetime to meet the requirement of fast growing demand of power in portable devices. DC-DC converter is the connection configuration between the battery and the functional circuitry. A good design of DC-DC converter will maximize the power efficiency and stabilize the power supply of following stages. As the representative of the DC-DC converter, Buck converter, which is a step down DC-DC converter that the output voltage level is smaller than the input voltage level, is the best-fit sample to start with. Digital control for DC-DC converters reduces noise sensitivity and enhances process, voltage and temperature (PVT) tolerance compared with analog control method. Also it will reduce the chip area and cost correspondingly. In battery-friendly perspective, current mode control has its advantage in over-current protection and parallel current sharing, which can form different structures to extend battery lifetime. In the thesis, the method to implement digitally average current mode control is introduced; including the FPGA based digital controller design flow. Based on the behavioral model of the close loop Buck converter with digital current control, the first FPGA based average current mode controller is burned into board and tested. With the analysis, the design metric of average current mode control is provided in the study. This will be the guideline of the parallel structure of future research. / Dissertation/Thesis / M.S. Electrical Engineering 2011
26

Optimisation du transfert d'énergie dans les systèmes photovoltaïques / Energy transfert optimization in photovoltaic systems

Petit, Pierre 06 July 2011 (has links)
Dans les nombreuses études actuelles sur le photovoltaïque, on assiste à de grands progrès tant dans le domaine des cellules à haut rendement énergétique, que sur les structures liées à l'exploitation. Afin de tirer parti de toute l'énergie produite, il a paru de tout premier ordre d'orienter les recherches sur les architectures parallèles en bus haute tension. Pour la génération de hautes tensions il est impératif d'utiliser des convertisseurs spécialement adaptés. En effet, si on utilise des convertisseurs classiques on se heurte à la problématique des pertes dans les composants de puissance, et notamment le transistor MOSFET de commutation utilisé pour le découpage. Une première étude a permis de vérifier que les contraintes de tension entraînent pour le transistor des pertes importantes aux tensions élevées. Cette première étude montre que seuls les transistors de faible tension inférieure à 100V ont des caractéristiques intéressantes pour notre application. Une recherche systématique a abouti à l'élaboration d'un convertisseur Boost à couplage magnétique. Grâce au recyclage des énergies parasites, les essais montrent que ce montage est bien adapté à notre application permettant d'obtenir des rendements de plus de 90%. Parmi les différentes stratégies d'extraction de puissance, le MPPT à incrément de conductance a été choisi pour ses qualités de précision et de facilité de mise en œuvre. Chaque panneau équipé d'un convertisseur envoie la puissance recueillie sur le bus haute tension, lui même relié à un onduleur de type SMA / In various studies on photovoltaic, major progresses have been observed, both concerning the cells and also in the field of their use. In order to take advantage of the energy it has been paramount to focus on parallel High Voltage bus. This High Voltage generation requires dedicated converters. In fact, using classical converters implicates important losses in the MOSFET used for switching. In a prior study we could ascertain important losses on transistors when submitted to high voltages as we assumed. It was shown then that only the transistors supporting a voltage less than 100V can be used for our application. A systematic investigation led to the Magnetically Coupled Boost converters. Thanks to the recycling of parasitic losses, our tests show an efficiency superior than 90%. Among the different power extraction strategies, the incremental conductance MPPT was used because of its top of the arts performances and convenience. Every DC/DC implemented panel converter supplies the HVDC bus which, itself, is connected to the SMA inverter
27

The steady-state analysis of the non-isolated and isolated type SEPIC PWM DC-DC converters for CCM

Dasari, Anuroop Reddy 15 December 2020 (has links)
No description available.
28

Řízený zdroj po CAN / CANbus controlled power converter

Golej, Juraj January 2021 (has links)
This thesis deals with the design and realization of a DC/DC converter, which allows power conversion from 10-52 V input voltage to 10-52 V output voltage at a maximum output current of 3 A. The converter can communicate with the superior system via the CAN. In the first chapter I deal with the available integrated circuits of DC/DC converters, from which I choose one for my application. In the second chapter, I propose a block scheme of the converter, which includes the requirements from the assignment as well as my additional ones. In the third chapter I deal with the design of an electronic circuit and with the calculation of control loops. In the fourth chapter I propose firmware for the STM32 MCU, which controls the device and communicates with the superior system. In the last chapter the DC/DC converter is tested.
29

Advanced topologies and control for high-efficiency bidirectional power converters for use in electric vehicles with on-board solar generation

Zheng, Pengfei 11 1900 (has links)
Electric vehicles (EVs) offer significant advantages over conventional internal combustion engine vehicles, including zero emissions and convenient overnight charging. However, there are still several challenges that need to be addressed. These challenges include limited driving ranges, slow refueling options while on-the-go, concerns related to the supply of lithium for batteries, and emissions associated with certain sources of electricity generation, such as coal. Adding on-board solar generation and/or fuel cell range extenders to EVs can help to mitigate some of these challenges, but also adds the need for optimal power electronic converters to manage the power flow of these multiple on-board energy sources, which is the focus of this thesis. This thesis first performs a comprehensive review of EV onboard chargers (OBCs) including charger system requirements by different standards and codes and different DC/DC power converters in the current infrastructures. Various power levels are compared and evaluated based on their component ratings, efficiency, cost, and power density. Secondly, there has been recent interest in harnessing solar power within electric vehicles, leading to the emergence of solar-charged electric vehicles (SEVs), which can offer extended driving ranges and less need for grid charging. These vehicles also offer a new opportunity for distributed generation when their traction batteries are fully charged, and the plugged-in vehicle is still generating solar energy. However, this also presents a unique power electronic dilemma. The OBC must exhibit high efficiency in two scenarios: firstly, during normal charging from the grid at power levels around 6.6 kW, and secondly, during vehicle-to-grid operation at significantly lower solar power levels, typically below 800 W. Unfortunately, conventional OBC designs tend to have low efficiency when operating at light loads. To tackle this challenge, this thesis proposes a novel bidirectional LLC-based converter, for use within the OBC, that achieves higher vehicle-to-grid efficiency at light loads than a traditional dual bridge converter. Detailed PLECS simulation results and experimental results are presented to verify the circuit. Thirdly, the presence of manufacturing variations can introduce parameter mismatches, resulting in voltage imbalances across capacitors in the proposed converter, or in other resonant converters with multiple transformer windings and two series-connected capacitors with a center connection. Such voltage imbalances pose significant concerns regarding safety and reliability. However, the existing capacitor balancing strategies developed for other converter topologies are not directly applicable to these new resonant multi-winding topologies. To address this issue, this thesis presents a novel method for achieving capacitor voltage balancing in a resonant multi-winding converter. The proposed method employs a straightforward approach to determine the appropriate balancing switching states. Time domain analysis is conducted to quantify the number of control cycles required, and an adaptive control strategy is introduced to enhance the balancing performance. The effectiveness of the proposed method and the beneficial effects on the converter's efficiency and bus capacitor sizes are validated through experimental investigations involving multiple bus capacitor sizes. Finally, though SEVs offer advantages over non-solar EVs, some challenges remain such as lithium supply concerns for large batteries, slow recharging, and driving range that is still limited compared to conventional vehicles. Fuel cell range-extended vehicles (FCREVs) can add a small fuel cell and hydrogen tank to allow quick refueling for long trips, and still use a reduced-size plug-in battery for the majority of short trips. This allows the driver to use efficient and convenient overnight charging for most daily commutes, and refuel with hydrogen on long-distance driving days if hydrogen stations are available. The smaller battery means that lithium requirements are reduced. Further, by adding on-board solar generation to a FCREV (S-FCREV), range can be further extended and grid charging requirements can be reduced. However, using conventional separate converters for a S-FCREV would be complex and costly, having a high number of semiconductor devices. To overcome this, the thesis proposes a practical multi-port converter that fulfills S-FCREV requirements with reduced components. A novel triple PWM and triple phase shift (TPTPS) control is proposed. Simulation and experimental results validate the proposed topology's operation and efficiency, offering a promising solution for integrating power electronics in S-FCREV applications. / Thesis / Doctor of Philosophy (PhD) / In the pursuit of sustainable transportation, recent scholarly investigations have placed significant emphasis on the advancement of electric vehicles (EVs) with a particular focus on solar-charged EVs and fuel cell range-extended vehicles (FCREVs) in order to help mitigate some of the drawbacks of battery EVs such as limited driving range, long refueling times, and charging impacts on the grid. Power electronic converters play a crucial role in managing the transfer of power between multiple energy sources, such as on-board solar panels, fuel cells, batteries, and connection to the grid. The objective of this thesis is to propose novel topologies and control for power electronic converters in solar-charged EVs and solar-charged FCREVs. Firstly, a novel bidirectional DC/DC topology is proposed for solar-charged EVs that allows a high-efficiency transfer of excess solar energy to the grid when the EV battery is full. Additionally, a novel control methodology for balancing the DC bus capacitors is introduced, aiming to reduce capacitor size and mitigate circulating unbalanced currents. Lastly, this thesis presents the pioneering practical implementation of a multi-port converter for a solar-charged FCREV, along with its adaptable control approach, enabling efficient power flow management among the grid, on-board battery, solar panels, and fuel cell.
30

A Frequency Response Based Approach to DC-DC Control Loop Design

Redilla, Jack A. January 2009 (has links)
No description available.

Page generated in 0.0651 seconds