• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 12
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Efficient Route-based Optimal Energy Management for Hybrid Electric Vehicles

Berntsson, Simon, Andreasson, Mattias January 2018 (has links)
The requirements on fuel consumption and emissions for passenger cars are getting stricter every year. This has forced the vehicle industry to look for ways to improve the performance of the driveline. With the increasing focus on electrification, a common method is to combine an electrical driveline with a conventional driveline that uses a petrol or diesel engine, thus creating a hybrid electric vehicle. To fully be able to utilise the potential of the driveline in such a vehicle, an efficient energy management strategy is needed. This thesis describes the development of an efficient route-based energy management strategy. Three different optimisation strategies are combined, deterministic dynamic programming, equivalent consumption minimisation strategy and convex optimisation, together with segmentation of the input data. The developed strategy shows a decrease in computational time with up to more than one hundred times compared to a benchmark algorithm. When implemented in Volvo's simulation tool, VSim, substantial fuel savings of up to ten percent is shown compared to a charge-depleting charge-sustain strategy.
12

Route Based Optimal Control Strategy for Plug-In Hybrid Electric Vehicles

Almgren, Johan, Elingsbo, Gustav January 2017 (has links)
More restrictive emission legislations, rising fuel prices and the realisation that oil is a limited resource have lead to the emergence of the hybrid electric vehicles.To fully utilise the potential of the hybrid electric vehicles, energy management strategies are needed. The main objective of the strategy is to ensure that the limited electric energy is utilised in an efficient manner.This thesis develops and evaluates an optimisation based energy management strategy for plug-in hybrid electric vehicles. The optimisation methods used are based on a dynamic programming and ECMS approach. The strategy is validated against Vsim, Volvo Cars' performance and fuel consumption analysis tool as well as against strategies where parts of the optimisation is replaced by logic. The results show that the developed strategy consumes less fuel both compared to the corresponding Vsim strategy and the logic strategies.

Page generated in 0.0191 seconds