• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implementation of a standard level set method for incompressible two-phase flow simulations

Johansson, Niklas January 2011 (has links)
The level set method is a powerful way of tracking surfaces by defining the surface as a zero level set of a continuous function that is usually a signed distance function. The level set method is one of the best methods for simulating multi-phase flow because it can easily handle fast topological changes, as well as splitting and merging of fluids. In this thesis, a standard level set method was implemented in C++, using the finite element method library deal.II, to simulate incompressible two-phase flow on some benchmark problems. The results show a significant change of mass in the simulations, something that should not be allowed to happen when simulating incompressible fluids. The mass changes mainly occur in the reinitialization phase, where the level set function is rebuilt to look more like a signed distance function.
2

Pokročilé numerické simulace ve fyzice kosmického plazmatu metodou konečných prvků / Advanced numerical simulations in space plasma physics using Finite Element Method

Kotek, Jan January 2017 (has links)
en.txt After an introduction into current sheet physics, with emphasis to solar physics we showed some formulations of finite element method. We implemented and evaluated new discontinuous finite element with Taylor basis and introduced deal.II library with an example of burgers equation. While the program is dimension independent, we compared our solution with a one-dimensional analytical solution. Finally, using previously derived LSFEM formulation, we solved simple current sheet problem using deal.II. Stránka 1
3

Modélisation du comportement hydromécanique des réservoirs fracturés à double porosité et double perméabilité. / A hydro-mechanical modeling of double porosity and double permeability fractured reservoirs

Dang, Hong Lam 21 February 2018 (has links)
La modélisation des massifs rocheux fracturés est un problèmes important dans de nombreux secteurs industriels, y compris, mais sans s'y limiter à l'exploitation pétrolière et gazière. Dans la littérature, les roches fracturées sont reconnues comme des milieux à double porosité et double perméabilité dans lesquels le réseau de fractures fournit la perméabilité primaire et la matrice rocheuse la perméabilité secondaire. L'idée de la dissociation de l'écoulement à l'intérieur du réseau de fractures et de la matrice,la double perméabilité, est toujours contestée pour les réservoirs fracturés. De nombreuses contributions sur cette question ont été présentées dans la littérature et les méthodes utilisées pourraient être classées dans deux approches principales : approches continues et discontinues. Chaque approche a ses avantages et ses limites. Pour surmonter les limites en gardant les avantages de ces deux approches, une approche nommée Embedded Fracture Continumm Approach (EFCA) qui emprunte le concept du modèle continu et intègre également l'effet des fractures explicites est considérée dans cette thèse. L'idée principale de cette approche repose sur le concept de la « cellule fracturée » représentant un milieu poreux qui a ses propres propriétés calculées à partir des propriétés de la matrice poreuse et des fractures qui la traversent. Le code de calcul développé dans le cadre de ce travail est basé sur la bibliothèque source DEAL.II. L'exactitude de l'EFCA a été étudiée à travers de différents tests. Plusieurs applications traitées dans ce travail comme la détermination des propriétés hydro-mécaniques effectives d'un site réel, estimation de la production de puits dans laquelle les fractures sont modélisées explicitement, démontrent la performance de l'EFCA dans la modélisation des roches fracturées ainsi que l'effet de la double porosité et de la double perméabilité aux comportements des réservoirs fracturés. / Fractured rock masses modeling is a challenge issue in many field of industry including but not limited to oiland gas exploitation. In the literature, fractured rock masse are in many cases recognized as double permeability medium in which fracture network provides the primary permeability and rock matrix plays asthe second one. The idea of dissociation of flow inside the fracture network and the matrix, the double permeability, is still challenged for fractured reservoirs. Numerous contributions on this issue have been presented in the past could be cast in two main approaches: continuum media approach and discontinuous approach. Each approach has its advantages and limitations. To overcome the limitation and to take advantage of these two approaches, the Embedded Fractured Continuum Approach (EFCA) which borrows the concept of continuum models and also incorporates the effect of explicit fractures is considered in this thesis. The principal idea of this approach lies on the concept of fracture cell representing a porous medium that has their own properties calculated from the properties of porous matrix and fractures intersecting it.The development in this work was conducted by using the library source code DEAL.II. The accuracy of EFCA was investigated through different verifications. Through some applications: determination of effective hydro-mechanical properties of an actual site, estimation of well production in which necessary fractures are modeled explicitly, we demonstrate the performance of the EFCA in the modeling fracture drock masses as well as the effect of double porosity and double permeability on behaviours of fractured reservoirs.
4

Simulation and growth of cadmium zinc telluride from small seeds by the travelling heater method

Roszmann, Jordan Douglas 08 June 2017 (has links)
The semiconducting compounds CdTe and CdZnTe have important applications in high-energy radiation detectors and as substrates for infrared devices. The materials offer large band gaps, high resistivity, and excellent charge transport properties; however all of these properties rely on very precise control of the material composition. Growing bulk crystals by the travelling heater method (THM) offers excellent compositional control and fewer defects compared to gradient freezing, but it is also much slower and more expensive. A particular challenge is the current need to grow new crystals onto existing seeds of similar size and quality. Simulations and experiments are used in this work to investigate the feasibility of growing these materials by THM without the use of large seed crystals. A new fixed-grid, multiphase finite element model was developed based on the level set method and used to calculate the mass transport regime and interface shapes inside the growth ampoule. The diffusivity of CdTe in liquid tellurium was measured through dissolution experiments, which also served to validate the model. Simulations of tapered THM growth find conditions similar to untapered growth with interface shapes that are sensitive to strong thermosolutal convection. Favourable growth conditions are achievable only if convection can be controlled. In preliminary experiments, tapered GaSb crystals were successfully grown by THM and large CdTe grains were produced by gradient freezing. Beginning with this seed material, 25 mm diameter CdTe and CdZnTe crystals were grown on 10 mm diameter seeds, and 65 mm diameter CdTe on 25 mm seeds. Unseeded THM growth was also investigated, as well as ampoule rotation and a range of thermal conditions and ampoule surface coatings. Outward growth beyond one or two centimeters was achieved only at small diameters and included secondary grains and twin defects; however, limited outward growth of larger seeds and agreement between experimental and numerical results suggest that tapered growth may be achievable in the future. This would require active temperature control at the base of the crystal and reduction of convection through thermal design or by rotation of the ampoule or applied magnetic fields. / Graduate / 0346 / 0794 / 0548 / jordan.roszmann@gmail.com
5

Discontinuous Galerkin Finite Element Method for the Nonlinear Hyperbolic Problems with Entropy-Based Artificial Viscosity Stabilization

Zingan, Valentin Nikolaevich 2012 May 1900 (has links)
This work develops a discontinuous Galerkin finite element discretization of non- linear hyperbolic conservation equations with efficient and robust high order stabilization built on an entropy-based artificial viscosity approximation. The solutions of equations are represented by elementwise polynomials of an arbitrary degree p > 0 which are continuous within each element but discontinuous on the boundaries. The discretization of equations in time is done by means of high order explicit Runge-Kutta methods identified with respective Butcher tableaux. To stabilize a numerical solution in the vicinity of shock waves and simultaneously preserve the smooth parts from smearing, we add some reasonable amount of artificial viscosity in accordance with the physical principle of entropy production in the interior of shock waves. The viscosity coefficient is proportional to the local size of the residual of an entropy equation and is bounded from above by the first-order artificial viscosity defined by a local wave speed. Since the residual of an entropy equation is supposed to be vanishingly small in smooth regions (of the order of the Local Truncation Error) and arbitrarily large in shocks, the entropy viscosity is almost zero everywhere except the shocks, where it reaches the first-order upper bound. One- and two-dimensional benchmark test cases are presented for nonlinear hyperbolic scalar conservation laws and the system of compressible Euler equations. These tests demonstrate the satisfactory stability properties of the method and optimal convergence rates as well. All numerical solutions to the test problems agree well with the reference solutions found in the literature. We conclude that the new method developed in the present work is a valuable alternative to currently existing techniques of viscous stabilization.

Page generated in 0.0173 seconds