• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photoluminescence and X-ray Diffraction Analyses of Cadmium Zinc Telluride Crystals

Jamnejad, Ramin 01 May 2014 (has links)
This thesis present photoluminescence spectroscopy and X-ray diffraction analyses of four different cadmium zinc telluride samples with different quality and features and similar zinc molar concentration of 10%. Photoluminescence spectroscopy of the samples let us obtain several physical parameters of the samples which are indicators of quality, composition, structure, and impurity levels of the samples. The band gap energy of the samples obtained from the photoluminescence spectra at low temperatures helped us to estimate zinc molar concentration of the samples. Temperature dependence of band gap energy in these samples has been analyzed and exciton-LO phonon interactions in the samples has been analyzed. From temperature dependence of full width at half maximum of the photoluminescence peak several parameters including concentration of impurity centers and inhomogeneity of the samples are determined and compared in order to check the quality of the samples. Thermal quenching of the photoluminescence peak has been analyzed and the processes which are associated with each parameter are determined and discussed. X-ray diffraction analyses of the sample for the location and width of the peaks have been analyzed and several characteristics of the samples including quality, lattice constant and zinc molar concentration of the samples are determined and compared. The parameters that are obtained from these analyses are compared with the ones from the photoluminescence spectra and showed a good agreement between the results of these two non-destructive characterization techniques. / Graduate / 0605 / 0544 / 0794
2

Photoluminescence and X-ray Diffraction Analyses of Cadmium Zinc Telluride Crystals

Jamnejad, Ramin 01 May 2014 (has links)
This thesis present photoluminescence spectroscopy and X-ray diffraction analyses of four different cadmium zinc telluride samples with different quality and features and similar zinc molar concentration of 10%. Photoluminescence spectroscopy of the samples let us obtain several physical parameters of the samples which are indicators of quality, composition, structure, and impurity levels of the samples. The band gap energy of the samples obtained from the photoluminescence spectra at low temperatures helped us to estimate zinc molar concentration of the samples. Temperature dependence of band gap energy in these samples has been analyzed and exciton-LO phonon interactions in the samples has been analyzed. From temperature dependence of full width at half maximum of the photoluminescence peak several parameters including concentration of impurity centers and inhomogeneity of the samples are determined and compared in order to check the quality of the samples. Thermal quenching of the photoluminescence peak has been analyzed and the processes which are associated with each parameter are determined and discussed. X-ray diffraction analyses of the sample for the location and width of the peaks have been analyzed and several characteristics of the samples including quality, lattice constant and zinc molar concentration of the samples are determined and compared. The parameters that are obtained from these analyses are compared with the ones from the photoluminescence spectra and showed a good agreement between the results of these two non-destructive characterization techniques. / Graduate / 0605 / 0544 / 0794
3

Optical And Structural Investigations Of Defects In CdZnTe(Zn ~ 4%) Crystals

Kulkarni, Gururaj Anand 02 1900 (has links) (PDF)
The CdTe family members (in particular CdZnTe) remain the substrate of choice for epitaxial growth of HgCdTe for use in high performance infrared (IR) detectors and focal plane arrays. This is the case despite advances in the use of alternate substrate technologies such as buffered GaAs and GaAs on Si; these technologies, to date, have not reproducibly demonstrated device performance comparable to the arrays made in HgCdTe grown on CdZnTe and CdTe. The quality of CdTe family materials has improved significantly over the past several years and so the quality and reproducibility of IR detectors has improved along with them. It is clear, however, that CdTe family substrates still have a significant impact on the performance of HgCdTe devices and that further research is required to reduce the effects of substrate on these devices. Unlike silicon or gallium arsenide, it is very difficult to grow the large area single crystals of CdZnTe due to thermodynamic limitations. It has the lowest thermal conductivity among all semiconductors that makes it difficult to obtain planar solid-liquid interface, which is desirable for the growth of large area single crystals of CdZnTe. Due to its high ionicity and weak bonding, defects are easily incorporated during the growth. Also, it is well established that both the structural defects and impurity content of Hg1-xCdxTe epitaxial layers are strongly influenced by the quality of the substrates used in the epitaxial growth process. A substrate of poor structural quality will result in a poor substrate/layer interface from which defects will propagate into the epilayer. It is known that our focal plane arrays (FPAs) are backside illuminated, with the device connected to underlying silicon multiplexer, using a matrix of indium bumps. Thus the substrate should have high IR transmission to pass the radiation on to the detector for collection. High IR transmission requires chemically and electrically homogeneous crystals free from extraneous second phase particles. This objective is one of the most difficult thermodynamic and technological problems in the growth of CdTe and related alloys. The bulk CdZnTe crystals grown from melt suffer from the inherent disadvantage of accommodating tellurium precipitates because of high growth temperature and phase diagram limitations. These tellurium (Te) precipitates condense as cadmium vacancies and Te interstitials during the cooling process, which contribute to intrinsic point defects. Although extensive efforts have been made in the area of purification of the CdZnTe crystals by using 6N pure starting materials, still the high temperature melt growth leads to impurity pickup during the crystal growth process. This deviation in the stoichiometry, especially due to free carriers, impurities and second phase tellurium precipitates, play the major role in reducing the infrared transmission through the CdZnTe substrate material. Also they affect the device performance when used for detector applications. In this context a thorough investigation of the non-stoichiometry of the CdZnTe material is mandatory to improve the material quality. It is my endeavor in this respect to present in this thesis “optical and structural investigations of defects in CdZnTe (Zn~4%) crystals”. The present thesis has been organized into six chapters. Chapter 1: It presents an up to date comprehensive review of the defects in CdTe binary and CdZnTe ternary compound semiconductors. It includes an introduction to the ternary II-VI cadmium zinc telluride with potential device applications. Issues related to CdTe based substrates for infrared (IR) applications have been discussed. Growth as well as several material aspects like crystal structure, band structure, mechanical, thermal, optical and dielectric properties have been discussed in details. The chapter ends with the motivation and scope for the present thesis. Chapter 2 : Te precipitates were identified and characterized in CdZnTe (Zn ~ 4%) crystals using various physical characterization techniques and the results are presented in Chapter 2. X-ray diffraction rocking curve measurements were carried out on a series of samples to assess the overall crystalline quality of the as grown CdZnTe crystals, in conjunction with Fourier transform infrared (FTIR) absorption spectroscopy measurements to identify the presence of Te precipitates. Further, the CdZnTe samples having Te precipitates were systematically characterized using micro-Raman imaging technique. CdZnTe wafers grown in three and six zone furnaces using quartz and/or pyrolytic boron nitride (PBN) crucibles have been subjected to micro-Raman imaging to quantify and understand the nature of Te precipitates. It is well known that for the normal phase of Te precipitates, the Raman modes appear centered around 121 (A1), 141(E) /TO (CdTe) cm -1and a weak mode around 92 (E) cm -1 in CdZnTe indicating the presence of trigonal lattice of Te. Using the micro-Raman maps and taking the spatial distribution of the area ratio of 121 to 141 cm-1 Raman modes, the size and distribution of Te precipitates were estimated. A substantial reduction in Te precipitate size and an improvement in the IR transmission in the 2.2 – 5 µm IR window was observed in the CdZnTe crystals subjected to post growth annealing under Cd+Zn vapors at 650 oC for 6 hrs. Also it is shown that the samples grown in pyrolytic boron nitride (PBN) crucibles have shown an overall improvement in the crystalline quality and reduction in the Te precipitate size as compared to the samples grown in quartz crucibles. The possible reasons for these observations have been discussed in chapter 2. The presence of Te precipitates under high pressure phase was detected by the blueshift of the Raman bands that appear at 121 (A1) cm-1for a normal Te phase, indicating that these micro-Raman maps are basically the distribution of Te precipitates in different phases. NIR microscopy imaging has been carried out to further substantiate the presence of Te precipitates under high pressure phase and that of larger Te precipitates. The significance of micro-Raman imaging lies in quantifying and demonstrating the high pressure phase of Te precipitates in CdZnTe crystals in a non-destructive way. Also it is shown that the presence of Te precipitates lead to loss of useful signal in the 2.2 – 6 µm wavelength regions and hence are “deleterious” for substrate applications of CdZnTe crystals required for the growth and fabrication of HgCdTe detectors. Chapter 3: The effects of annealing and hydrogenation on the low temperature photoluminescence (PL) spectra of CdZnTe (Zn ~ 4%) crystals are reported in this chapter. It is shown that annealing at 600 oC for 12 hrs under Cd vapors has resulted in the disappearance of both C-A and DAP recombination features (attributed to singly ionized cadmium vacancy acceptors) observed in the 1.5 – 1.6 eV band edge region in the low temperature PL spectra of CdZnTe, confirming the origination of these bands from Cd vacancy defects. The presence of copper impurity has been identified by the appearance of the 1.616 (AoX) eV energy peak attributed to exciton bound to the neutral copper acceptor and the 1.469 eV band attributed to copper acceptor in the donor acceptor pair (DAP) recombinations. It is shown that, only annealing under Cd+Zn vapors at 650 oC for 6 hrs has resulted in the passivation of the 1.469 eV band and the mechanism has been explained invoking the Hume-Rothery rule. Passivation of the 1.469 eV band is significant, since CdZnTe substrate copper contamination was found to degrade HgCdTe epitaxial layer and hence the performance of HgCdTe infrared (IR) detectors. Also it shown that vacuum annealing has resulted in the introduction of a new defect band around 0.85 eV in the low temperature PL spectra of CdZnTe possibly due to the loss of Cd and/or Zn. Further, the effects of hydrogenation in passivating the defect bands observed in the low temperature PL spectra of the control CdZnTe crystals are discussed. Using micro-Raman imaging technique, it is shown that hydrogenation has resulted in the reduction in size and restoration of normal phase for Te precipitates, which otherwise were present under high pressure phase in CdZnTe crystals. It is shown that the net effect of hydrogenation is to improve the quality of CdZnTe crystals at low temperature (50 oC) as compared to the high Cd+Zn annealing temperature (650 oC) whose effect is only to reduce the size of Te precipitates. To further substantiate this an analysis of the temperature dependent resonance micro-Raman spectra recorded with 633 and 488 nm lasers has been made and it is shown that appearance of the multiple orders (up to 4 orders) of the CdTe like LO phonon modes and emergence of the ZnTe like LO phonon mode are clear indications of the improved quality of the hydrogenated CdZnTe crystals. Chapter 4: Manifestation of Fe2+and Fe3+charge states of Fe in undoped CdZnTe (Zn ~ 4 %) crystals grown in quartz crucibles by asymmetrical Bridgemann method and their respective optical and magnetic behaviors have been discussed in this chapter. Fe2+being optically active shows absorption around 2295 cm-1in the low temperature (T = 3 K) FTIR spectra, while Fe3+being magnetically active exhibits coexistence of para and ferromagnetic phases, as identified by low temperature electron spin resonance and supported independently by low temperature SQUID and AC susceptibility measurements. In the paramagnetic phase (TC ~ 4.8 K) the inverse of ac susceptibility follows the Curie-Weiss law. In the ferromagnetic phase (TC ~ 4.8 K) the thermal evolution of magnetization follows the well known Bloch’s T3/2 law. This is further supported by the appearance of hysteresis in the SQUID measurements at 2K below TC. Small coercive field of 10 Oe as estimated in the hysteresis suggests that the magnetic anisotropy is very small in these systems. Chapter 5: In this chapter, details of the indigenously developed laser beam induced current (LBIC) instrumentation have been presented. These include instrumental arrangement of the micro-mechanical system for raster scanning of defects in semicoductors and fabrication details of continuous flow liquid helium cryostat for low temperature LBIC measurements. Preliminary LBIC data recorded using this system have been shown to demonstrate the operability of the system. Chapter 6: This chapter includes a brief write-up summarizing the results and draws the attention for the possible future work. Appendix A: Here C++ programs for LBIC measurements are presented. Appendix B: Here the CAD diagrams for the full cross sectional view of the liquid helium cryostat consisting of “assembly liquid helium cryostat” and “part liquid helium cryostat” are attached.
4

Characterization and optimization of CdZnTe Frisch collar gamma-ray spectrometers and their development in an array of detectors

Kargar, Alireza January 1900 (has links)
Doctor of Philosophy / Department of Mechanical and Nuclear Engineering / Douglas S. McGregor / Cadmium Zinc Telluride (CdZnTe) has been used for many applications, such as medical imaging and astrophysics, since its first demonstration as a room temperature operating gamma-ray detector in 1992. The wide band gap, high effective Z-number and high resistivity of CdZnTe make it a good candidate for use as a room temperature operated detector with good absorption efficiency, while maintaining a low bulk leakage current at high electric fields. Nevertheless, the low mobility lifetime products mu tau of holes in CdZnTe makes detectors position sensitive, unless advanced detector designs are employed. Among those designs is the Frisch collar technology which turns the detector into a single carrier device by negating the degrading effects of hole trapping and low mobility. The superiority of the Frisch collar technology over other methods include its inexpensive associated electronics and straight forward fabrication process. The main objective of this research study is to develop a large volume gamma-ray detector with an array of individual CdZnTe Frisch collar gamma-ray spectrometers while still using a single readout. Several goals were to be accomplished prior to the main objective. One goal is to develop a reliable low cost method to fabricate bulk CdZnTe crystals into Frisch collar detectors. Another goal was to investigate the limitations of crystal geometry and the crystal electrical properties to obtain the best spectroscopic performance from CdZnTe Frisch collar detectors. Still another goal was to study all other external parameters such as the collar length, anode to cathode ratio, the insulator thickness and applied voltage on performance of CdZnTe Frisch collar detectors. The final goal was to construct the CdZnTe Frisch collar devices into an array and to show its feasibility of being used for large volume detector.
5

Broadband IR stokes polarimetry for the electro-optic characterization of cadmium zinc telluride

FitzGerald, William 21 December 2017 (has links)
The infrared portion of the electro-magnetic spectrum is a challenging region in which to perform optical techniques, limited by both device efficiency and availability. In this dissertation, a new optical technique is introduced to facilitate polarization state measurement across the mid-IR. In addition, cadmium zinc telluride (CZT) is investigated as a potential new material suitable for electro-optic devices which function in the mid-IR, while also being characterized by other optical analysis methods. Thin film interference is discussed as it relates to optical techniques and electronic devices. A Stokes polarimeter is used to study the oxide development on the surface of CZT electronic devices, and the effect of natural thin films on substrates used in optical techniques is discussed. In particular, the impact of thin film interference on sum-frequency generation spectroscopy measurements of methyl group orientation are assessed. An FTIR source operated in step-scan mode is used to create a broadband, IR Stokes polarimeter which measures the polarization state of light from 2.5-11 μm simultaneously. Its design, involving two photo-elastic modulators and an analyzer, and theory are described in detail. This instrument is demonstrated by measuring linearly polarized light, and is applied to the measurement of the refractive index dispersion of quartz from 2.5-4 μm, which goes beyond the limits of literature values. Electro-optic crystals of CZT with electrodes of gold and indium are characterized at each wavelength in the mid-IR in terms of their electro-optic effects and apparent depolarization using the Stokes polarimeter. The material displays high-resistivity, allowing it to be operated with up to 5 kV applied DC voltage. The linear electro-optic effect is observed, but overall properties of the samples are found to be heavily dependent on the choice of metal for the electrodes. With a high-work function electrode material in gold, a large depletion region is created when high voltage is applied, which leads to a gradient in electric field throughout the material. This causes a beam of light transmitted through it to experience a distribution of electro-optic behaviours, which leads to overall depolarization of the light. Indium’s work function is lower than gold’s, and is closer to that of CZT. With indium electrodes, the electric field is found to be more consistent, and behaviour is much closer to ideal. The electro-optic effect of CZT is also characterized with AC applied voltage in order to assess its suitability to AC applied voltage applications. The power supply used for this was limited to 60 Hz, which precludes a complete characterization in this regard, but unexpected behaviour was seen. A methodology utilizing an oscilloscope and FTIR was developed in order to more completely understand the material response, and divergent behaviour with positive and negative voltage was found. / Graduate / 2018-12-18
6

Τοmοscintigraphie myοcardique dοuble-isοtοpe (¹²³Ι/99mΤc) sur gamma-caméra à semi-cοnducteur : aspects méthodologiques et applications cliniques / Dual-isotope (123I/99mTc) myocardial SPECT using semiconductor gamma-cameras : methodological aspects and clinical applications

Blaire, Tanguy 26 September 2017 (has links)
Les nouvelles gamma-caméras à semi-conducteurs utilisant des détecteurs au CZT sont dédiées aux explorations cardiaques. Leurs sensibilité, résolution spatiale et en énergie nettement améliorées comparativement aux gamma-caméras conventionnelles sont une révolution en médecine nucléaire. Ces gamma-caméras utilisent de nouvelles géométries d’acquisition, de nouveaux algorithmes de reconstruction, et ouvrent de nouvelles perspectives dans les études simultanées en double-isotope de l’123I et du 99mTc, dont les pics énergétiques sont proches.Nous avons étudié l’impact de l’amélioration de la résolution en énergie en comparant deux modèles de gamma-caméras à détecteurs semi-conducteurs aux gamma-caméras conventionnelles. A l’aide d’études sur fantômes anthropomorphes et chez des patients porteurs d’insuffisance cardiaque, notre travail s’est concentré sur les acquisitions scintigraphiques (i) de la fonction ventriculaire gauche (99mTc) en présence d’123I, (ii) de la perfusion myocardique (99mTc) en présence d’123I (innervation), et (iii) du rapport cardiomédiastinal de la fixation d’123I- métaiodobenzylguanidine (123I-MIBG) lors d’acquisitions double-isotope (123I-MIBG/99mTc- tétrofosmine) chez les patients souffrant d’insuffisance cardiaque.Nos résultats montrent que la meilleure résolution en énergie des gamma-caméras CZT permet en étude double-isotope (i) une évaluation de la FEVG et du mouvement régional dans les différentes fenêtres d'énergie (123I ou 99mTc) et les types d'acquisition (simple- vs double-isotope), (ii) une évaluation simultanée et combinée de la perfusion (99mTc) et de l’innervation (123I) du myocarde, et (iii) l’évaluation du rapport cardiomédiastinal de la fixation d’123I-MIBG. Chacune de ces trois parties a fait l’objet d’une publication. / New dedicated-cardiac cameras using CZT detectors have dramatically transformed the routine of myocardial perfusion imaging. With a better count detection sensitivity, an improved spatial and energy resolution, they potentially enable combined assessment of myocardial innervation (123I) and perfusion (99mTc) within a single imaging session. These cameras images with different sharpness and contrast-to-noise ratios.Using two CZT cameras with anthropomorphic phantom, and clinical studies in heart failure patients, our work focused on (i) the left ventricular function assessment within the 99mTc window in presence of 123I, (ii) the evaluation of regional myocardial innervation (123I) and perfusion (99mTc) match and mismatch with single- (separate 123I and 99mTc acquisition) and simultaneous dual-isotope acquisitions, and (iii) the late heart-to-mediastinal ratio (HMR) of 123I-MIBG uptake determined using dual-isotope CZT acquisition with that determined using conventional planar imaging in patients with heart failure.Our results found no impact of the acquisition mode (single vs dual) or the type of CZT camera on 123I and 99mTc defect size and mismatch, LVEF, and HMR of 123I-MIBG uptake.This work provides a new step toward simultaneous dual-isotope acquisition for combined innervation, perfusion and ventricular function assessment.
7

Instrumentation of CdZnTe detectors for measuring prompt gamma-rays emitted during particle therapy / Instrumentierung von CdZnTe Detektoren zur Messung prompter Gammastrahlung während der Teilchentherapie

Födisch, Philipp 15 May 2017 (has links) (PDF)
Background: The irradiation of cancer patients with charged particles, mainly protons and carbon ions, has become an established method for the treatment of specific types of tumors. In comparison with the use of X-rays or gamma-rays, particle therapy has the advantage that the dose distribution in the patient can be precisely controlled. Tissue or organs lying near the tumor will be spared. A verification of the treatment plan with the actual dose deposition by means of a measurement can be done through range assessment of the particle beam. For this purpose, prompt gamma-rays are detected, which are emitted by the affected target volume during irradiation. Motivation: The detection of prompt gamma-rays is a task related to radiation detection and measurement. Nuclear applications in medicine can be found in particular for in vivo diagnosis. In that respect the spatially resolved measurement of gamma-rays is an essential technique for nuclear imaging, however, technical requirements of radiation measurement during particle therapy are much more challenging than those of classical applications. For this purpose, appropriate instruments beyond the state-of-the-art need to be developed and tested for detecting prompt gamma-rays. Hence the success of a method for range assessment of particle beams is largely determined by the implementation of electronics. In practice, this means that a suitable detector material with adapted readout electronics, signal and information processing, and data interface must be utilized to solve the challenges. Thus, the parameters of the system (e.g. segmentation, time or energy resolution) can be optimized depending on the method (e.g. slit camera, time-of-flight measurement or Compton camera). Regardless of the method, the detector system must have a high count rate capability and a large measuring range (>7 MeV). For a subsequent evaluation of a suitable method for imaging, the mentioned parameters may not be restricted by the electronics. Digital signal processing is predestined for multipurpose tasks, and, in terms of the demands made, the performance of such an implementation has to be determined. Materials and methods: In this study, the instrumentation of a detector system for prompt gamma-rays emitted during particle therapy is limited to the use of a cadmium zinc telluride (CdZnTe, CZT) semiconductor detector. The detector crystal is divided into an 8x8 pixel array by segmented electrodes. Analog and digital signal processing are exemplarily tested with this type of detector and aims for application of a Compton camera to range assessment. The electronics are implemented with commercial off-the-shelf (COTS) components. If applicable, functional units of the detector system were digitalized and implemented in a field-programmable gate array (FPGA). An efficient implementation of the algorithms in terms of timing and logic utilization is fundamental to the design of digital circuits. The measurement system is characterized with radioactive sources to determine the measurement dynamic range and resolution. Finally, the performance is examined in terms of the requirements of particle therapy with experiments at particle accelerators. Results: A detector system based on a CZT pixel detector has been developed and tested. Although the use of an application-specific integrated circuit is convenient, this approach was rejected because there was no circuit available which met the requirements. Instead, a multichannel, compact, and low-noise analog amplifier circuit with COTS components has been implemented. Finally, the 65 information channels of a detector are digitized, processed and visualized. An advanced digital signal processing transforms the traditional approaches of nuclear electronics in algorithms and digital filter structures for an FPGA. With regard to the characteristic signals (e.g. varying rise times, depth-dependent energy measurement) of a CZT pixel detector, it could be shown that digital pulse processing results in a very good energy resolution (~2% FWHM at 511 keV), as well as permits a time measurement in the range of some tens of nanoseconds. Furthermore, the experimental results have shown that the dynamic range of the detector system could be significantly improved compared to the existing prototype of the Compton camera (~10 keV..7 MeV). Even count rates of ~100 kcps in a high-energy beam could be ultimately processed with the CZT pixel detector. But this is merely a limit of the detector due to its volume, and not related to electronics. In addition, the versatility of digital signal processing has been demonstrated with other detector materials (e.g. CeBr3). With foresight on high data throughput in a distributed data acquisition from multiple detectors, a Gigabit Ethernet link has been implemented as data interface. Conclusions: To fully exploit the capabilities of a CZT pixel detector, a digital signal processing is absolutely necessary. A decisive advantage of the digital approach is the ease of use in a multichannel system. Thus with digitalization, a necessary step has been done to master the complexity of a Compton camera. Furthermore, the benchmark of technology shows that a CZT pixel detector withstands the requirements of measuring prompt gamma-rays during particle therapy. The previously used orthogonal strip detector must be replaced by the pixel detector in favor of increased efficiency and improved energy resolution. With the integration of the developed digital detector system into a Compton camera, it must be ultimately proven whether this method is applicable for range assessment in particle therapy. Even if another method is more convenient in a clinical environment due to practical considerations, the detector system of that method may benefit from the shown instrumentation of a digital signal processing system for nuclear applications. / Hintergrund: Die Bestrahlung von Krebspatienten mit geladenen Teilchen, vor allem Protonen oder Kohlenstoffionen, ist mittlerweile eine etablierte Methode zur Behandlung von speziellen Tumorarten. Im Vergleich mit der Anwendung von Röntgen- oder Gammastrahlen hat die Teilchentherapie den Vorteil, dass die Dosisverteilung im Patienten präziser gesteuert werden kann. Dadurch werden um den Tumor liegendes Gewebe oder Organe geschont. Die messtechnische Verifikation des Bestrahlungsplans mit der tatsächlichen Dosisdeposition kann über eine Reichweitenkontrolle des Teilchenstrahls erfolgen. Für diesen Zweck werden prompte Gammastrahlen detektiert, die während der Bestrahlung vom getroffenen Zielvolumen emittiert werden. Fragestellung: Die Detektion von prompten Gammastrahlen ist eine Aufgabenstellung der Strahlenmesstechnik. Strahlenanwendungen in der Medizintechnik finden sich insbesondere in der in-vivo Diagnostik. Dabei ist die räumlich aufgelöste Messung von Gammastrahlen bereits zentraler Bestandteil der nuklearmedizinischen Bildgebung, jedoch sind die technischen Anforderungen der Strahlendetektion während der Teilchentherapie im Vergleich mit klassischen Anwendungen weitaus anspruchsvoller. Über den Stand der Technik hinaus müssen für diesen Zweck geeignete Instrumente zur Erfassung der prompten Gammastrahlen entwickelt und erprobt werden. Die elektrotechnische Realisierung bestimmt maßgeblich den Erfolg eines Verfahrens zur Reichweitenkontrolle von Teilchenstrahlen. Konkret bedeutet dies, dass ein geeignetes Detektormaterial mit angepasster Ausleseelektronik, Signal- und Informationsverarbeitung sowie Datenschnittstelle zur Problemlösung eingesetzt werden muss. Damit können die Parameter des Systems (z. B. Segmentierung, Zeit- oder Energieauflösung) in Abhängigkeit der Methode (z.B. Schlitzkamera, Flugzeitmessung oder Compton-Kamera) optimiert werden. Unabhängig vom Verfahren muss das Detektorsystem eine hohe Ratenfestigkeit und einen großen Messbereich (>7 MeV) besitzen. Für die anschließende Evaluierung eines geeigneten Verfahrens zur Bildgebung dürfen die genannten Parameter durch die Elektronik nicht eingeschränkt werden. Eine digitale Signalverarbeitung ist für universelle Aufgaben prädestiniert und die Leistungsfähigkeit einer solchen Implementierung soll hinsichtlich der gestellten Anforderungen bestimmt werden. Material und Methode: Die Instrumentierung eines Detektorsystems für prompte Gammastrahlen beschränkt sich in dieser Arbeit auf die Anwendung eines Cadmiumzinktellurid (CdZnTe, CZT) Halbleiterdetektors. Der Detektorkristall ist durch segmentierte Elektroden in ein 8x8 Pixelarray geteilt. Die analoge und digitale Signalverarbeitung wird beispielhaft mit diesem Detektortyp erprobt und zielt auf die Anwendung zur Reichweitenkontrolle mit einer Compton-Kamera. Die Elektronik wird mit seriengefertigten integrierten Schaltkreisen umgesetzt. Soweit möglich, werden die Funktionseinheiten des Detektorsystems digitalisiert und in einem field-programmable gate array (FPGA) implementiert. Eine effiziente Umsetzung der Algorithmen in Bezug auf Zeitverhalten und Logikverbrauch ist grundlegend für den Entwurf der digitalen Schaltungen. Das Messsystem wird mit radioaktiven Prüfstrahlern hinsichtlich Messbereichsdynamik und Auflösung charakterisiert. Schließlich wird die Leistungsfähigkeit hinsichtlich der Anforderungen der Teilchentherapie mit Experimenten am Teilchenbeschleuniger untersucht. Ergebnisse: Es wurde ein Detektorsystem auf Basis von CZT Pixeldetektoren entwickelt und erprobt. Obwohl der Einsatz einer anwendungsspezifischen integrierten Schaltung zweckmäßig wäre, wurde dieser Ansatz zurückgewiesen, da kein verfügbarer Schaltkreis die Anforderungen erfüllte. Stattdessen wurde eine vielkanalige, kompakte und rauscharme analoge Verstärkerschaltung mit seriengefertigten integrierten Schaltkreisen aufgebaut. Letztendlich werden die 65 Informationskanäle eines Detektors digitalisiert, verarbeitet und visualisiert. Eine fortschrittliche digitale Signalverarbeitung überführt die traditionellen Ansätze der Nuklearelektronik in Algorithmen und digitale Filterstrukturen für einen FPGA. Es konnte gezeigt werden, dass die digitale Pulsverarbeitung in Bezug auf die charakteristischen Signale (u.a. variierende Anstiegszeiten, tiefenabhängige Energiemessung) eines CZT Pixeldetektors eine sehr gute Energieauflösung (~2% FWHM at 511 keV) sowie eine Zeitmessung im Bereich von einigen 10 ns ermöglicht. Weiterhin haben die experimentellen Ergebnisse gezeigt, dass der Dynamikbereich des Detektorsystems im Vergleich zum bestehenden Prototyp der Compton-Kamera deutlich verbessert werden konnte (~10 keV..7 MeV). Nach allem konnten auch Zählraten von >100 kcps in einem hochenergetischen Strahl mit dem CZT Pixeldetektor verarbeitet werden. Dies stellt aber lediglich eine Begrenzung des Detektors aufgrund seines Volumens, nicht jedoch der Elektronik, dar. Zudem wurde die Vielseitigkeit der digitalen Signalverarbeitung auch mit anderen Detektormaterialen (u.a. CeBr3) demonstriert. Mit Voraussicht auf einen hohen Datendurchsatz in einer verteilten Datenerfassung von mehreren Detektoren, wurde als Datenschnittstelle eine Gigabit Ethernet Verbindung implementiert. Schlussfolgerung: Um die Leistungsfähigkeit eines CZT Pixeldetektors vollständig auszunutzen, ist eine digitale Signalverarbeitung zwingend notwendig. Ein entscheidender Vorteil des digitalen Ansatzes ist die einfache Handhabbarkeit in einem vielkanaligen System. Mit der Digitalisierung wurde ein notwendiger Schritt getan, um die Komplexität einer Compton-Kamera beherrschbar zu machen. Weiterhin zeigt die Technologiebewertung, dass ein CZT Pixeldetektor den Anforderungen der Teilchentherapie für die Messung prompter Gammastrahlen stand hält. Der bisher eingesetzte Streifendetektor muss zugunsten einer gesteigerten Effizienz und verbesserter Energieauflösung durch den Pixeldetektor ersetzt werden. Mit der Integration des entwickelten digitalen Detektorsystems in eine Compton-Kamera muss abschließend geprüft werden, ob dieses Verfahren für die Reichweitenkontrolle in der Teilchentherapie anwendbar ist. Auch wenn sich herausstellt, dass ein anderes Verfahren unter klinischen Bedingungen praktikabler ist, so kann auch dieses Detektorsystem von der gezeigten Instrumentierung eines digitalen Signalverarbeitungssystems profitieren.
8

Instrumentation of CdZnTe detectors for measuring prompt gamma-rays emitted during particle therapy

Födisch, Philipp 12 May 2017 (has links)
Background: The irradiation of cancer patients with charged particles, mainly protons and carbon ions, has become an established method for the treatment of specific types of tumors. In comparison with the use of X-rays or gamma-rays, particle therapy has the advantage that the dose distribution in the patient can be precisely controlled. Tissue or organs lying near the tumor will be spared. A verification of the treatment plan with the actual dose deposition by means of a measurement can be done through range assessment of the particle beam. For this purpose, prompt gamma-rays are detected, which are emitted by the affected target volume during irradiation. Motivation: The detection of prompt gamma-rays is a task related to radiation detection and measurement. Nuclear applications in medicine can be found in particular for in vivo diagnosis. In that respect the spatially resolved measurement of gamma-rays is an essential technique for nuclear imaging, however, technical requirements of radiation measurement during particle therapy are much more challenging than those of classical applications. For this purpose, appropriate instruments beyond the state-of-the-art need to be developed and tested for detecting prompt gamma-rays. Hence the success of a method for range assessment of particle beams is largely determined by the implementation of electronics. In practice, this means that a suitable detector material with adapted readout electronics, signal and information processing, and data interface must be utilized to solve the challenges. Thus, the parameters of the system (e.g. segmentation, time or energy resolution) can be optimized depending on the method (e.g. slit camera, time-of-flight measurement or Compton camera). Regardless of the method, the detector system must have a high count rate capability and a large measuring range (>7 MeV). For a subsequent evaluation of a suitable method for imaging, the mentioned parameters may not be restricted by the electronics. Digital signal processing is predestined for multipurpose tasks, and, in terms of the demands made, the performance of such an implementation has to be determined. Materials and methods: In this study, the instrumentation of a detector system for prompt gamma-rays emitted during particle therapy is limited to the use of a cadmium zinc telluride (CdZnTe, CZT) semiconductor detector. The detector crystal is divided into an 8x8 pixel array by segmented electrodes. Analog and digital signal processing are exemplarily tested with this type of detector and aims for application of a Compton camera to range assessment. The electronics are implemented with commercial off-the-shelf (COTS) components. If applicable, functional units of the detector system were digitalized and implemented in a field-programmable gate array (FPGA). An efficient implementation of the algorithms in terms of timing and logic utilization is fundamental to the design of digital circuits. The measurement system is characterized with radioactive sources to determine the measurement dynamic range and resolution. Finally, the performance is examined in terms of the requirements of particle therapy with experiments at particle accelerators. Results: A detector system based on a CZT pixel detector has been developed and tested. Although the use of an application-specific integrated circuit is convenient, this approach was rejected because there was no circuit available which met the requirements. Instead, a multichannel, compact, and low-noise analog amplifier circuit with COTS components has been implemented. Finally, the 65 information channels of a detector are digitized, processed and visualized. An advanced digital signal processing transforms the traditional approaches of nuclear electronics in algorithms and digital filter structures for an FPGA. With regard to the characteristic signals (e.g. varying rise times, depth-dependent energy measurement) of a CZT pixel detector, it could be shown that digital pulse processing results in a very good energy resolution (~2% FWHM at 511 keV), as well as permits a time measurement in the range of some tens of nanoseconds. Furthermore, the experimental results have shown that the dynamic range of the detector system could be significantly improved compared to the existing prototype of the Compton camera (~10 keV..7 MeV). Even count rates of ~100 kcps in a high-energy beam could be ultimately processed with the CZT pixel detector. But this is merely a limit of the detector due to its volume, and not related to electronics. In addition, the versatility of digital signal processing has been demonstrated with other detector materials (e.g. CeBr3). With foresight on high data throughput in a distributed data acquisition from multiple detectors, a Gigabit Ethernet link has been implemented as data interface. Conclusions: To fully exploit the capabilities of a CZT pixel detector, a digital signal processing is absolutely necessary. A decisive advantage of the digital approach is the ease of use in a multichannel system. Thus with digitalization, a necessary step has been done to master the complexity of a Compton camera. Furthermore, the benchmark of technology shows that a CZT pixel detector withstands the requirements of measuring prompt gamma-rays during particle therapy. The previously used orthogonal strip detector must be replaced by the pixel detector in favor of increased efficiency and improved energy resolution. With the integration of the developed digital detector system into a Compton camera, it must be ultimately proven whether this method is applicable for range assessment in particle therapy. Even if another method is more convenient in a clinical environment due to practical considerations, the detector system of that method may benefit from the shown instrumentation of a digital signal processing system for nuclear applications.:1. Introduction 1.1. Aim of this work 2. Analog front-end electronics 2.1. State-of-the-art 2.2. Basic design considerations 2.2.1. CZT detector assembly 2.2.2. Electrical characteristics of a CZT pixel detector 2.2.3. High voltage biasing and grounding 2.2.4. Signal formation in CZT detectors 2.2.5. Readout concepts 2.2.6. Operational amplifier 2.3. Circuit design of a charge-sensitive amplifier 2.3.1. Circuit analysis 2.3.2. Charge-to-voltage transfer function 2.3.3. Input coupling of the CSA 2.3.4. Noise 2.4. Implementation and Test 2.5. Results 2.5.1. Test pulse input 2.5.2. Pixel detector 2.6. Conclusion 3. Digital signal processing 3.1. Unfolding-synthesis technique 3.2. Digital deconvolution 3.2.1. Prior work 3.2.2. Discrete-time inverse amplifier transfer function 3.2.3. Application to measured signals 3.2.4. Implementation of a higher order IIR filter 3.2.5. Conclusion 3.3. Digital pulse synthesis 3.3.1. Prior work 3.3.2. FIR filter structures for FPGAs 3.3.3. Optimized fixed-point arithmetic 3.3.4. Conclusion 4. Data interface 4.1. State-of-the-art 4.2. Embedded Gigabit Ethernet protocol stack 4.3. Implementation 4.3.1. System overview 4.3.2. Media Access Control 4.3.3. Embedded protocol stack 4.3.4. Clock synchronization 4.4. Measurements and results 4.4.1. Throughput performance 4.4.2. Synchronization 4.4.3. Resource utilization 4.5. Conclusion 5. Experimental results 5.1. Digital pulse shapers 5.1.1. Spectroscopy application 5.1.2. Timing applications 5.2. Gamma-ray spectroscopy 5.2.1. Energy resolution of scintillation detectors 5.2.2. Energy resolution of a CZT pixel detector 5.3. Gamma-ray timing 5.3.1. Timing performance of scintillation detectors 5.3.2. Timing performance of CZT pixel detectors 5.4. Measurements with a particle beam 5.4.1. Bremsstrahlung Facility at ELBE 6. Discussion 7. Summary 8. Zusammenfassung / Hintergrund: Die Bestrahlung von Krebspatienten mit geladenen Teilchen, vor allem Protonen oder Kohlenstoffionen, ist mittlerweile eine etablierte Methode zur Behandlung von speziellen Tumorarten. Im Vergleich mit der Anwendung von Röntgen- oder Gammastrahlen hat die Teilchentherapie den Vorteil, dass die Dosisverteilung im Patienten präziser gesteuert werden kann. Dadurch werden um den Tumor liegendes Gewebe oder Organe geschont. Die messtechnische Verifikation des Bestrahlungsplans mit der tatsächlichen Dosisdeposition kann über eine Reichweitenkontrolle des Teilchenstrahls erfolgen. Für diesen Zweck werden prompte Gammastrahlen detektiert, die während der Bestrahlung vom getroffenen Zielvolumen emittiert werden. Fragestellung: Die Detektion von prompten Gammastrahlen ist eine Aufgabenstellung der Strahlenmesstechnik. Strahlenanwendungen in der Medizintechnik finden sich insbesondere in der in-vivo Diagnostik. Dabei ist die räumlich aufgelöste Messung von Gammastrahlen bereits zentraler Bestandteil der nuklearmedizinischen Bildgebung, jedoch sind die technischen Anforderungen der Strahlendetektion während der Teilchentherapie im Vergleich mit klassischen Anwendungen weitaus anspruchsvoller. Über den Stand der Technik hinaus müssen für diesen Zweck geeignete Instrumente zur Erfassung der prompten Gammastrahlen entwickelt und erprobt werden. Die elektrotechnische Realisierung bestimmt maßgeblich den Erfolg eines Verfahrens zur Reichweitenkontrolle von Teilchenstrahlen. Konkret bedeutet dies, dass ein geeignetes Detektormaterial mit angepasster Ausleseelektronik, Signal- und Informationsverarbeitung sowie Datenschnittstelle zur Problemlösung eingesetzt werden muss. Damit können die Parameter des Systems (z. B. Segmentierung, Zeit- oder Energieauflösung) in Abhängigkeit der Methode (z.B. Schlitzkamera, Flugzeitmessung oder Compton-Kamera) optimiert werden. Unabhängig vom Verfahren muss das Detektorsystem eine hohe Ratenfestigkeit und einen großen Messbereich (>7 MeV) besitzen. Für die anschließende Evaluierung eines geeigneten Verfahrens zur Bildgebung dürfen die genannten Parameter durch die Elektronik nicht eingeschränkt werden. Eine digitale Signalverarbeitung ist für universelle Aufgaben prädestiniert und die Leistungsfähigkeit einer solchen Implementierung soll hinsichtlich der gestellten Anforderungen bestimmt werden. Material und Methode: Die Instrumentierung eines Detektorsystems für prompte Gammastrahlen beschränkt sich in dieser Arbeit auf die Anwendung eines Cadmiumzinktellurid (CdZnTe, CZT) Halbleiterdetektors. Der Detektorkristall ist durch segmentierte Elektroden in ein 8x8 Pixelarray geteilt. Die analoge und digitale Signalverarbeitung wird beispielhaft mit diesem Detektortyp erprobt und zielt auf die Anwendung zur Reichweitenkontrolle mit einer Compton-Kamera. Die Elektronik wird mit seriengefertigten integrierten Schaltkreisen umgesetzt. Soweit möglich, werden die Funktionseinheiten des Detektorsystems digitalisiert und in einem field-programmable gate array (FPGA) implementiert. Eine effiziente Umsetzung der Algorithmen in Bezug auf Zeitverhalten und Logikverbrauch ist grundlegend für den Entwurf der digitalen Schaltungen. Das Messsystem wird mit radioaktiven Prüfstrahlern hinsichtlich Messbereichsdynamik und Auflösung charakterisiert. Schließlich wird die Leistungsfähigkeit hinsichtlich der Anforderungen der Teilchentherapie mit Experimenten am Teilchenbeschleuniger untersucht. Ergebnisse: Es wurde ein Detektorsystem auf Basis von CZT Pixeldetektoren entwickelt und erprobt. Obwohl der Einsatz einer anwendungsspezifischen integrierten Schaltung zweckmäßig wäre, wurde dieser Ansatz zurückgewiesen, da kein verfügbarer Schaltkreis die Anforderungen erfüllte. Stattdessen wurde eine vielkanalige, kompakte und rauscharme analoge Verstärkerschaltung mit seriengefertigten integrierten Schaltkreisen aufgebaut. Letztendlich werden die 65 Informationskanäle eines Detektors digitalisiert, verarbeitet und visualisiert. Eine fortschrittliche digitale Signalverarbeitung überführt die traditionellen Ansätze der Nuklearelektronik in Algorithmen und digitale Filterstrukturen für einen FPGA. Es konnte gezeigt werden, dass die digitale Pulsverarbeitung in Bezug auf die charakteristischen Signale (u.a. variierende Anstiegszeiten, tiefenabhängige Energiemessung) eines CZT Pixeldetektors eine sehr gute Energieauflösung (~2% FWHM at 511 keV) sowie eine Zeitmessung im Bereich von einigen 10 ns ermöglicht. Weiterhin haben die experimentellen Ergebnisse gezeigt, dass der Dynamikbereich des Detektorsystems im Vergleich zum bestehenden Prototyp der Compton-Kamera deutlich verbessert werden konnte (~10 keV..7 MeV). Nach allem konnten auch Zählraten von >100 kcps in einem hochenergetischen Strahl mit dem CZT Pixeldetektor verarbeitet werden. Dies stellt aber lediglich eine Begrenzung des Detektors aufgrund seines Volumens, nicht jedoch der Elektronik, dar. Zudem wurde die Vielseitigkeit der digitalen Signalverarbeitung auch mit anderen Detektormaterialen (u.a. CeBr3) demonstriert. Mit Voraussicht auf einen hohen Datendurchsatz in einer verteilten Datenerfassung von mehreren Detektoren, wurde als Datenschnittstelle eine Gigabit Ethernet Verbindung implementiert. Schlussfolgerung: Um die Leistungsfähigkeit eines CZT Pixeldetektors vollständig auszunutzen, ist eine digitale Signalverarbeitung zwingend notwendig. Ein entscheidender Vorteil des digitalen Ansatzes ist die einfache Handhabbarkeit in einem vielkanaligen System. Mit der Digitalisierung wurde ein notwendiger Schritt getan, um die Komplexität einer Compton-Kamera beherrschbar zu machen. Weiterhin zeigt die Technologiebewertung, dass ein CZT Pixeldetektor den Anforderungen der Teilchentherapie für die Messung prompter Gammastrahlen stand hält. Der bisher eingesetzte Streifendetektor muss zugunsten einer gesteigerten Effizienz und verbesserter Energieauflösung durch den Pixeldetektor ersetzt werden. Mit der Integration des entwickelten digitalen Detektorsystems in eine Compton-Kamera muss abschließend geprüft werden, ob dieses Verfahren für die Reichweitenkontrolle in der Teilchentherapie anwendbar ist. Auch wenn sich herausstellt, dass ein anderes Verfahren unter klinischen Bedingungen praktikabler ist, so kann auch dieses Detektorsystem von der gezeigten Instrumentierung eines digitalen Signalverarbeitungssystems profitieren.:1. Introduction 1.1. Aim of this work 2. Analog front-end electronics 2.1. State-of-the-art 2.2. Basic design considerations 2.2.1. CZT detector assembly 2.2.2. Electrical characteristics of a CZT pixel detector 2.2.3. High voltage biasing and grounding 2.2.4. Signal formation in CZT detectors 2.2.5. Readout concepts 2.2.6. Operational amplifier 2.3. Circuit design of a charge-sensitive amplifier 2.3.1. Circuit analysis 2.3.2. Charge-to-voltage transfer function 2.3.3. Input coupling of the CSA 2.3.4. Noise 2.4. Implementation and Test 2.5. Results 2.5.1. Test pulse input 2.5.2. Pixel detector 2.6. Conclusion 3. Digital signal processing 3.1. Unfolding-synthesis technique 3.2. Digital deconvolution 3.2.1. Prior work 3.2.2. Discrete-time inverse amplifier transfer function 3.2.3. Application to measured signals 3.2.4. Implementation of a higher order IIR filter 3.2.5. Conclusion 3.3. Digital pulse synthesis 3.3.1. Prior work 3.3.2. FIR filter structures for FPGAs 3.3.3. Optimized fixed-point arithmetic 3.3.4. Conclusion 4. Data interface 4.1. State-of-the-art 4.2. Embedded Gigabit Ethernet protocol stack 4.3. Implementation 4.3.1. System overview 4.3.2. Media Access Control 4.3.3. Embedded protocol stack 4.3.4. Clock synchronization 4.4. Measurements and results 4.4.1. Throughput performance 4.4.2. Synchronization 4.4.3. Resource utilization 4.5. Conclusion 5. Experimental results 5.1. Digital pulse shapers 5.1.1. Spectroscopy application 5.1.2. Timing applications 5.2. Gamma-ray spectroscopy 5.2.1. Energy resolution of scintillation detectors 5.2.2. Energy resolution of a CZT pixel detector 5.3. Gamma-ray timing 5.3.1. Timing performance of scintillation detectors 5.3.2. Timing performance of CZT pixel detectors 5.4. Measurements with a particle beam 5.4.1. Bremsstrahlung Facility at ELBE 6. Discussion 7. Summary 8. Zusammenfassung
9

Simulation and growth of cadmium zinc telluride from small seeds by the travelling heater method

Roszmann, Jordan Douglas 08 June 2017 (has links)
The semiconducting compounds CdTe and CdZnTe have important applications in high-energy radiation detectors and as substrates for infrared devices. The materials offer large band gaps, high resistivity, and excellent charge transport properties; however all of these properties rely on very precise control of the material composition. Growing bulk crystals by the travelling heater method (THM) offers excellent compositional control and fewer defects compared to gradient freezing, but it is also much slower and more expensive. A particular challenge is the current need to grow new crystals onto existing seeds of similar size and quality. Simulations and experiments are used in this work to investigate the feasibility of growing these materials by THM without the use of large seed crystals. A new fixed-grid, multiphase finite element model was developed based on the level set method and used to calculate the mass transport regime and interface shapes inside the growth ampoule. The diffusivity of CdTe in liquid tellurium was measured through dissolution experiments, which also served to validate the model. Simulations of tapered THM growth find conditions similar to untapered growth with interface shapes that are sensitive to strong thermosolutal convection. Favourable growth conditions are achievable only if convection can be controlled. In preliminary experiments, tapered GaSb crystals were successfully grown by THM and large CdTe grains were produced by gradient freezing. Beginning with this seed material, 25 mm diameter CdTe and CdZnTe crystals were grown on 10 mm diameter seeds, and 65 mm diameter CdTe on 25 mm seeds. Unseeded THM growth was also investigated, as well as ampoule rotation and a range of thermal conditions and ampoule surface coatings. Outward growth beyond one or two centimeters was achieved only at small diameters and included secondary grains and twin defects; however, limited outward growth of larger seeds and agreement between experimental and numerical results suggest that tapered growth may be achievable in the future. This would require active temperature control at the base of the crystal and reduction of convection through thermal design or by rotation of the ampoule or applied magnetic fields. / Graduate / 0346 / 0794 / 0548 / jordan.roszmann@gmail.com

Page generated in 0.0531 seconds