• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 69
  • 24
  • 13
  • 12
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 302
  • 180
  • 94
  • 82
  • 79
  • 52
  • 49
  • 39
  • 38
  • 32
  • 31
  • 30
  • 28
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Concepção de tabuleiros curvos e estaiados. / Conception of cable-stayed curved decks.

Chung, Gabriela Mariana 15 December 2017 (has links)
Dos sistemas de pontes suspensas por cabos, as estaiadas tem sido largamente utilizadas devido a sua capacidade de vencer grandes vãos e, além dessa vantagem estrutural, são esteticamente bem aceitas pela sociedade, valorizando o espaço urbano e muitas vezes tornando-o ponto de referência. Atualmente, em que a otimização da infraestrutura viária é de extrema importância, as pontes estaiadas são bastante exploradas por suas vantagens construtivas, não demandando grandes áreas de apoio durante a construção que possam interferir no fluxo de veículos ou embarcações existente. Em conjunto a isso, a escolha do tipo de obra de arte se deve a diversos outros fatores, tais como as condições locais da fundação, o consumo de materiais e mão de obra, facilidades construtivas, etc. Muitas vezes é necessário estudar outras formas de utilização desse tipo de estruturas, como é o caso de pontes curvas, em que um traçado reto não bastaria para transpor um obstáculo e respeitar o traçado projetado ao viário. Para isso, o conhecimento das técnicas e teorias que fundamentam pontes estaiadas curvas é requisito para o estudo de uma concepção mais favorável e/ou otimizada, onde devem ser avaliados todos os fatores que influem em seu comportamento. Este trabalho apresenta a avaliação de esforços no tabuleiro e no mastro para diversos modelos estruturais. Na primeira etapa será discutida a forma de concepção dos modelos aplicados a um estudo de caso através de comparação dos esforços para avaliar a viabilidade de simular o tensionamento inicial nos cabos através da aplicação de uma queda de temperatura. Em seguida, serão avaliados os efeitos da posição do mastro e do posicionamento unilateral dos estais, permitindo obter a configuração que apresente um melhor desempenho geral. Por fim, as análises serão aplicadas a um estudo de caso com tabuleiro de maior largura. Dos resultados obtidos verificou-se que a configuração de tabuleiro suspenso pelo lado interno, única que não invade o gabarito de pedestres ou veículos, se mostrou viável sem, contudo, apresentar todas as vantagens estruturais, de modo que há torção significativa. Em compensação, a flexão se mostrou reduzida. / In systems of suspended cable bridges, the cable-stayed bridges had been widely used because of its capacity to overcome large spans and for being aesthetically well accepted by society, valuing the urban space and often making it a landmark. Currently, where the optimization of road infrastructure is of utmost importance, cable-stayed bridges are quite exploited by their constructive advantages, not requiring large areas of support during construction that may affect the existing traffic flow. In addition to this, the choice of the type of structure is due to several other factors such as local conditions of the foundation, the consumption of materials and labor, construction facilities, etc. It is necessary to study other forms of use of such structures, as in the case of curved bridges, where a straight path would not be enough to overcome an obstacle and respect the geometry of the road. For this, the knowledge of the techniques and theories behind curved cable-stayed bridges is a requisite for the study of a more favorable and/or optimized design, where all the factors that influence their behavior should be evaluated. This paper presents the assessment of forces on the deck and pylon for several structural models. In the first step, the models design will be discussed applied to a case by comparing the forces to evaluate the feasibility of simulating the initial tensioning in the cables through the application of a temperature drop. Next, the effects of the pylon position and the unilateral positioning of the cables will be evaluated, allowing to obtain the configuration that presents a better overall performance. Finally, the analyzes will be applied to a case with a wider deck. From the obtained results, it has been found that the configuration of deck suspended by the inner side, which does not invade the pedestrian or vehicle clearance, has proved to be feasible without, however, presenting all the structural advantages, so that there is significant torsion. In contrast, flexion was reduced.
92

Chloride Concentration and Blow-Through Analysis for Concrete Bridge Decks Rehabilitated Using Hydro-Demolition

Roper, Elizabeth Ashleigh 01 April 2018 (has links)
The objectives of this research were 1) to investigate the effects of hydrodemolition treatment timing on chloride concentration profiles in concrete bridge decks for depths of concrete removal below the top mat of reinforcing steel and 2) to investigate factors that influence the occurrence of blow-throughs in concrete bridge decks when hydrodemolition is used. The research results are intended to provide engineers with guidance about the latest timing of hydrodemolition that can maintain a chloride concentration level below 2.0 lb of chloride per cubic yard of concrete at the levels of both the top and bottom mats of reinforcing steel, as well as about conditions that may indicate a higher probability of blow-through during hydrodemolition. The scope of this research included a questionnaire survey of hydrodemolition companies to summarize common practices in the field, numerical modeling of chloride concentration to investigate hydrodemolition treatment timing on typical Utah bridge decks, and structural analysis to investigate factors that influence the occurrence of blow-throughs during hydrodemolition. While some survey respondents indicated that certain parameters vary, the responses are valuable for understanding typical practices and were used to design the numerical experiments. The numerical modeling generated chloride concentration profiles through a 75-year service life given a specific original cover depth (OCD), treatment time, and surface treatment usage. The results indicate that, when a surface treatment is used, the concentration at either the top or bottom mat of reinforcing steel does not reach or exceed 2.0 lb of chloride per cubic yard of concrete after hydrodemolition during the 75 years of simulated bridge deck service life. The results also indicate that, when a surface treatment is not used, the chloride concentration at the top mat of reinforcement exceeds 2.0 lb of chloride per cubic yard of concrete within 10, 15, and 20 years for OCD values of 2.0, 2.5, and 3.0 in., respectively. The numerical experiments generated results in terms of the main effect of each input variable on the occurrence of blow-throughs and interactions among selected input variables. For each analysis, blow-through can be expected when the calculated factor of safety is less than 1.0. The factor of safety significantly increases with increasing values of transverse rebar spacing and concrete compressive strength and decreasing values of depth of removal below the bottom of the top reinforcing mat, orifice size, and water pressure within the ranges of these parameters investigated in this experimentation. The factor of safety is relatively insensitive to jet angle. For both case studies evaluated in this research, the blow-through analysis correctly predicted a high or low potential for blow-through on the given deck.
93

Development of a Chloride Concentration Sampling Protocol for Concrete Bridge Decks

Montgomery, Sharlan Renae 18 March 2014 (has links)
As the primary cause of concrete bridge deck deterioration in the United States is corrosion of the steel reinforcement as a result of the application of chloride-based deicing salts, chloride concentration testing is among the most common techniques for evaluating the condition of a concrete bridge deck. The objectives of this research were to 1) compare concrete drilling and powder collection techniques to develop a sampling protocol for accurately measuring chloride concentrations and 2) determine the number of chloride concentration test locations necessary for adequately characterizing the chloride concentration of a given bridge deck. Laboratory experiments on concrete drilling and powder collection were conducted to compare current concrete powder sampling techniques, including constant and stepwise drilling methods and spoon and vacuum powder collection methods. In addition, three charts were prepared to determine the number of chloride concentration test locations necessary for adequately characterizing the chloride concentration of a given bridge deck. The number of samples is dependent on reliability, spatial variability in chloride concentration, and an allowable difference between sample and population means. For the experiment on drilling, this research shows that the practice of decreasing the size of the drill bit in a stepwise fashion with increasing sampling depth reduces the possibility of abrading concrete from the sides of the hole above the sampling depth, where the chloride concentrations are higher, during drilling of lower lifts. For the experiment on powder collection, this research demonstrates that representative samples of concrete powder can be collected with either a spoon or a vacuum. Based on the results of this research, the stepwise drilling method and either the spoon or vacuum powder collection method are recommended for application. In addition, the charts developed in this research are recommended for estimating the number of chloride concentration test locations necessary for adequately characterizing the chloride concentration of a given bridge deck. This research will be helpful in effectively assessing the condition of concrete bridge decks with respect to chloride-induced corrosion of the reinforcing steel and prioritizing bridge maintenance and rehabilitation projects.
94

Vertical Electrical Impedance Measurements on Concrete Bridge Decks Using a Large-Area Electrode

Barton, Jeffrey David 01 August 2018 (has links)
In regions where chloride-based deicing salts are applied to bridge decks, corrosion of the interior steel reinforcement is a major problem. Vertical electrical impedance (VEI) is an effective measurement technique to quantitatively assess the cover protection on bridges against aggressive chemical penetration of reinforced concrete. In its current form, traditional vertical electrical impedance is time-consuming and destructive because a direct connection to the reinforcing steel is required to provide a ground reference. A new method using a large-area electrode (LAE) permits VEI measurement without a direct electrical connection to the steel reinforcement. The LAE creates a nondestructive, semi-direct, low impedance connection between the measurement electronics and the reinforcing steel. In this work, numerical simulations are performed on common electrode arrangements to demonstrate the effectiveness of the LAE when significant variations in concrete conductivity exist. Physical experiments of a large-area electrode are carried out in the laboratory and field to validate the numerical simulations and to provide additional comparisons with the traditional tapped steel reinforcement method. The results of this study are a set of important design considerations for VEI utilizing a LAE to connect to the underlying rebar. Using these design considerations, the large-area electrode method was validated using both an analytical and a finite-element model, laboratory experiments, and field experiments on two bridges in Utah. The validation results indicate the LAE can replace the direct connection to the reinforcing steel. As a result of this work, a multichannel VEI scanner which uses the LAE method was built which can provide VEI information for bridge engineers and managers to better rehabilitate deteriorating reinforced concrete.
95

Automated Impact Response Sounding for Accelerated Concrete Bridge Deck Inspection

Larsen, Jacob Lynn 01 July 2018 (has links)
Infrastructure deterioration is an international problem requiring significant attention. One particular manifestation of this deterioration is the occurrence of sub-surface cracking (delaminations) in reinforced concrete bridge decks. Of many techniques available for inspection, air-coupled impact-echo testing, or sounding, is a non-destructive evaluation technique to determine the presence and location of delaminations based upon the acoustic response of a bridge deck when struck by an impactor. In this work, two automated air-coupled impact echo sounding devices were designed and constructed. Each device included fast and repeatable impactors, moving platforms for traveling across a bridge deck, microphones for air-coupled sensing, distance measurement instruments for keeping track of impact locations, and signal processing modules. First, a single-channel automated sounding device was constructed, followed by a multi channel system that was designed and built from the findings of the single-channel apparatus. The multi channel device performed a delamination inspection in the same manner as the single-channel device but could complete an inspection of an entire traffic lane in one pass. Each device was tested on at least one concrete bridge deck and the delamination maps produced by the devices were compared with maps generated from a traditional chain-drag sounding inspection. The comparison between the two inspection approaches yielded high correlations for bridge deck delamination percentages. Testing with the two devices was more than seven and thirty times faster, respectively, than typical manual sounding procedures. This work demonstrates a technological advance in which sounding can be performed in a manner that makes complete bridge deck scanning for delaminations rapid, safe, and practical.
96

Analysis of Selected Factors Affecting Concrete Cover Measurements on Bridge Decks

Hoki, Jeffrey Ryan 17 March 2011 (has links)
The objective of this research was to quantify the effects of selected parameters on the accuracy of concrete cover measurements on bridge decks. This research involved three full-factorial laboratory experiments each designed to investigate one of three primary variables. These primary variables included distance to a parallel adjacent bar, distance to a reinforcement intersection, and incorrect bar size input for the cover meter. Each experiment also involved four secondary variables known to affect cover readings. These secondary variables included actual cover depth, meter brand, antenna type, and bar size. Statistical analyses were performed to determine the significance of each factor. A margin of error of 0.125 in., corresponding to the increase in diameter between successive U.S. standard rebar sizes, was established as the threshold for practical importance in the data analysis. Three primary findings resulted from the three experiments performed in this research. For the meters and antennas tested, the results of the field-of-view experiment indicated that, if the spacing is greater than approximately 4.0 in., the returned readings are within the threshold for practical importance established for this research. The results of the proximity-to-an-intersection experiment indicated that, regardless of where the measurement is taking place in relation to an intersection, the operator can be confident that the errors will be less than 0.125 in. as long as the bar in question is above the intersecting bar. The results of the wrong-bar-size experiment indicated that, if the operator of the cover meter does not know the actual rebar size in question, the measured cover will be within 0.125 in. of the actual cover depth as long as the meter input is within one bar size of the correct value. Obtaining accurate cover measurements on bridge decks is important for quality assurance, service life prediction, and rehabilitation programming.
97

Delamination Detection in Concrete Using Disposable Impactors for Excitation

Patil, Anjali Narendra 14 December 2013 (has links)
Delaminations in concrete bridge decks result primarily from corrosion of the reinforcing bars (or rebar). This corrosion leads to volumetric expansion of the rebar. When the rebar expands, concrete cracks, and there is a localized separation of the concrete cover from the underlying concrete. Impact-echo testing is an effective technique to map delaminations on concrete bridge decks. However, mapping speed is limited by necessary retrieval of the impactor for traditional tests. To achieve higher scanning speeds, it is advantageous to use both a non-contact measurement (air-coupled impact-echo) and disposable-impactor excitation. Disposable impactors have the potential advantage of achieving greater deck scanning speeds because they do not need to be retrieved, and they can also be used with air-coupled measurement systems. This thesis reports impact excitation of concrete using disposable impactors such as water droplets and ice balls. The impact characteristics of these impactors are compared with those of steel balls and chain links. Comparing the acoustic recordings on intact and delaminated concrete surface shows that water droplets and ice balls are able to excite flexural resonant modes associated with delamination defects. The use of water droplets and ice balls for shallow delamination detection in concrete is thus demonstrated.
98

Live-Load Test and Computer Modeling of a Pre-Cast Concrete Deck, Steel Girder Bridge, and a Cast-in-Place Concrete Box Girder Bridge

Pockels, Leonardo A. 01 December 2009 (has links)
The scheduled replacement of the 8th North Bridge, in Salt Lake City, UT, presented a unique opportunity to test a pre-cast concrete deck, steel girder bridge. A live-load test was performed under the directions of Bridge Diagnostic Inc (BDI) and Utah State University. Six different load paths were chosen to be tested. The recorded data was used to calibrate a finite-element model of this superstructure, which was created using solid, shell, and frame elements. A comparison between the measured and finite-element response was performed and it was determined that the finite-element model replicated the measured results within 3.5% of the actual values. This model was later used to obtain theoretical live-load distribution factors, which were compared with the AASHTO LRFD Specifications estimations. The analysis was performed for the actual condition of the bridge and the original case of the bridge, which included sidewalks on both sides. The comparison showed that the code over predicted the behavior of the actual structure by 10%. For the original case, the code's estimation differed by as much as 45% of the theoretical values. Another opportunity was presented to test the behavior of a cast-in-place concrete box girder bridge in Joaquin County, CA. The Walnut Grove Bridge was tested by BDI at the request of Utah State University. The test was performed with six different load paths and the recorded data was used to calibrate a finite-element model of the structure. The bridge was modeled using shell elements and the supports were modeled using solid elements. The model was shown to replicate the actual behavior of the bridge to within 3% of the measured values. The calibrated model was then used to calculate the theoretical live-load distribution factors, which allowed a comparison of the results with the AASHTOO LRFD Specifications equations. This analysis was performed for the real conditions of the bridge and a second case where intermediate diaphragms were not included. It was determined that the code's equations estimated the behavior of the interior girder more accurately for the second model (within 10%) than the real model of the bridge (within 20%).
99

Eye tracking metrics for workload estimation in flight deck operations

Ellis, Kyle Kent Edward 01 July 2009 (has links)
Flight decks of the future are being enhanced through improved avionics that adapt to both aircraft and operator state. Eye tracking allows for non-invasive analysis of pilot eye movements, from which a set of metrics can be derived to effectively and reliably characterize workload, this research will generate quantitative algorithms to classify pilot state through eye tracking metrics. Through various metrics within the realm of eye tracking, flight deck operation research is used to determine metric correlations between a pilot's workload and eye tracking metric patterns. The basic metrics within eye tracking, such as saccadic movement, fixations and link analysis provide clear measurable elements that experimenters analyzed to create a quantitative algorithm that reliably classifies operator workload. The study conducted at the University of Iowa's Operator Performance Lab 737-800 simulator was outfit with a Smarteye remote eye-tracking system that yielded gaze vector resolution down to 1 degree across the flight deck. Three levels of automation and 2 levels of outside visual conditions were changed on a KORD ILS approach between CAT II and CAT III visual conditions, and varying from full autopilot controlled by the pre-programmed flight management system, flight director guidance, and full manual approach with localizer and glide slope guidance. Initial subjective results indicated a successful variation in driving pilot workload across all 12 IFR pilots that were run through the 7 run testing sequence.
100

Behavior of Precast Bridge Deck Joints with Small Bend Diameter U-Bars

Chapman, Cheryl Elizabeth 01 August 2010 (has links)
The Interstate Highway System plays a vital role in our economic development by providing a continuous corridor for transporting goods and services. Currently, there is a need for repair and expansion of the existing highways, which include all bridges along its path. Because of the high demand for the highway system, repair and expansion must occur rapidly and efficiently. In recent years, precast bridge deck systems have become an efficient way to reduce construction time during repair. This thesis presents the experimental research of the behavior of the U-Bar joint detail used in precast bridge deck systems. This detail consists of staggered reinforcement extending beyond the precast deck portion into the joint. Six specimens utilizing the U-Bar detail were constructed and tested. Three specimens were tested in flexure to simulate the forces applied in a longitudinal deck joint, while three specimens were tested in pure tension to simulate the forces experienced in a transverse deck joint located over an interior pier. A tight 180° bend at 3db was desired in order to minimize the thickness of the deck. To achieve this tight bend, deformed wire reinforcement was chosen for the U-Bar detail due to the favorable material properties of deformed wire reinforcement. The purpose of the testing was to determine if the joint details could generate a precast deck system that could emulate the monolithic cast-in-place deck systems already in use. For monolithic behavior in a precast deck system, the joints must be able transfer shear, tension and moments. In this research, the joint overlap length was the most dominant variable, and should not be less than 152.4 mm (6”). The precast bridge deck joint should consist of high strength concrete with f’c of at least 68.9 MPa (10 ksi). The longitudinal reinforcement spacing should be no greater than 152.4 mm (6”).

Page generated in 0.024 seconds