• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 69
  • 24
  • 13
  • 12
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 303
  • 181
  • 95
  • 82
  • 80
  • 52
  • 50
  • 39
  • 38
  • 33
  • 31
  • 30
  • 29
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

High-Speed Apparatus and Signal Processing for Accoustic Delamination Detection on Concrete Bridge Decks

Hendricks, Lorin James 10 April 2020 (has links)
Maintenance and repair of deteriorating civil infrastructure are global problems requiring significant attention and resources. Accurate measurements of civil infrastructure enable lower repair and rehabilitation costs if mitigation techniques are deployed at earlier stages of deterioration. This research describes an infrastructure inspection solution to scan concrete bridge decks for internal cracking at high speeds. Internal cracking within bridge decks, known as delamination, is a particularly difficult defect to identify because it is often not detectable through visual inspection. State-of-the practice testing approaches involve the use of slow and subjective manual sounding techniques and costly lane closures. The need for an improved testing approach has led to decades of research investigating the use of acoustic impact-echo testing to detect bridge deck delaminations. The research presented here consists of a study of the acoustic radiation patterns of delamination defects when they are impacted. Acoustic data were collected on an in-service bridge deck and compared to acoustic data collected on defects in decommissioned bridge deck slabs and on simulated delaminations. This study examined cases of ideal and non-ideal delaminations on the in-service bridge deck and identified characteristics of non-ideal delaminations. An apparatus consisting of a high-speed impact-echo platform and recording suite was designed and constructed. Using this towed apparatus, an order-of-magnitude increase in scanning speed was obtained over other reported methods. Significant design effort was employed to achieve synchronization between different sensing devices using networked computer systems. Analysis was also developed to process and automatically classify acoustic responses to determine the presence and location of delaminations. Demonstrated performance against ground truth data obtained on an in-service bridge deck includes an achievement of approximately 90% probability of detection with only a 2% false alarm rate within 0.30 m. Because of the need to classify acoustic data when ground truth may not be obtainable, a new outlier rejection algorithm, which robustly removes outliers for classification on both simulated and field test data, was also developed. These contributions advance state-of-the-art bridge inspection and also lay the groundwork for additional studies of bridge deck deterioration processes. The framework also demonstrates how a tedious, subjective, and manual inspection process can be automated using advanced excitation tools, signal processing, and machine learning.
52

Use of Vertical Electrical Impedance for Nondestructive Evaluation of Concrete Bridge Decks

Boekweg, Enoch Thomas 27 July 2021 (has links)
Nondestructive evaluation of civil infrastructure is increasingly important in the modern world to assess structures, predict longevity, and prescribe rehabilitation or replacement. For concrete bridge decks, one emerging diagnostic technique is vertical electrical impedance (VEI) testing, which is a nondestructive evaluation technology that quantitatively assesses the cover protection offered to steel reinforcement. Because VEI testing is still a relatively new approach to bridge deck inspection, additional studies are needed to increase the interpretability of VEI data. This thesis increases VEI interpretability with two advances. The first advance, presented in Chapter 2, offers an analytical model for interpreting VEI measurements of cracked bridge decks. The analytical model allows crack depth to be predicted from VEI measurements. The second advance, presented in Chapter 3, offers an interpretation of VEI measurements within the context of other, more typical, nondestructive bridge deck measurements. Surface cracks cause a significant acceleration of chloride ingress towards the steel reinforcement because they provide a direct path for chlorides to penetrate the concrete cover and corrode the steel. Estimating the depth of these cracks enables better prediction of chloride loading and influences predictions of service life. An invertible analytical model for VEI measurements of cracks based on a cylindrical dipole approximation is presented. This model is validated with numerical simulations, laboratory experiments, and destructive field tests performed on concrete parking garage decks. Inversion of the model permits depth estimation of cracks and a quantitative interpretation of VEI measurements for this specific concrete defect. An additional study was performed on a newly constructed bridge deck in Midvale, Utah, that was subject to an unexpected rainstorm during construction. Several forms of nondestructive testing, including VEI testing, were performed on the deck. Statistical analysis of the tests permitted assessment of the bridge deck. Comparing VEI testing with these other NDT methods has not been done before, and the results of this work will assist those who are unfamiliar with VEI with interpretation of VEI data in the context of other, more typical NDT techniques.
53

Effects of Single Panel Replacement of a Full-Scale, Full-Depth, Precast Concrete Bridge Deck System

Perry, Jason Robert 01 August 2012 (has links)
The use of precast concrete deck panels is becoming increasingly popular for bridge construction and rehabilitation in the state of Utah and across the country. It allows for the use of full depth concrete deck panels but removes the long construction times of traditional cast-in-place methods. One of the challenges to the use of precast deck panels is the transverse deck panel joints that exist between the panels. These joints are unreinforced using traditional methods and therefore are the weakest section of the bridge. In many situations the joint will fail and water seeps through and can damage the bridge superstructure. Post-tensioning of precast decks has become the standard. The post-tensioning provides reinforcing through the joints, reducing the cracking that occurs. Additionally, the post-tensioning provides pressure along the joint and closes cracks that have occurred, therefore preventing water from leaking through to the superstructure and damaging it. The Utah Department of Transportation uses post-tensioning cables that run along the length of the bridge deck, applying pressure on the joints. One of the problems with using this method is it does not allow for the replacement of a single deck panel should the need arise. Utah State University has been researching a new post-tensioned connection that would allow for the replacement of a single deck panel. The “curved bolt” connection connects each deck panel to adjacent panels, providing reinforcement and post-tensioning along the joint. Laboratory testing was undertaken to investigate the effects of single panel bridge rehabilitation on the existing deck system.
54

Tranverse Deck Reinforcement for Use in Tide Mill Bridge

Bajzek, Sasha N. 25 March 2013 (has links)
The objective of the research presented in this thesis was to study and optimize the transverse deck reinforcement for a skewed concrete bridge deck supported by Hybrid Composite Beams (HCB's).  An HCB consists of a Glass Fiber Reinforced Polymer outer shell, a concrete arch, and high strength seven wire steel strands running along the bottom to tie the ends of the concrete arch together.  The remaining space within the shell is filled with foam.  The concrete arch does not need to be cast until the beam is in place, making the HCB very light during shipping.  This lowers construction costs and time since more beams can be transported per truck and smaller cranes can be used.  HCB's are quite flexible, so AASHTO LRFD's design model for bridge decks, as a one-way slab continuous over rigid supports, might not apply well to the HCB's deck design. A skewed three HCB girder bridge with a reinforced concrete deck and end diaphragms was built in the laboratory at Virginia Tech.  Concentrated loads were applied at locations chosen to maximize the negative and positive moments in the deck in the transverse direction.  The tests revealed that the transverse reinforcement was more than adequate under service loads. An Abaqus model was created to further study the behavior of the bridge and to help create future design recommendations.  The model revealed that the HCB bridge was behaving more like a stiffened plate at the middle section of the bridge, indicating that the flexibility of the girders needed to be considered. / Master of Science
55

Development Of A Simplified Finite Element Approach For Frp Bridge Decks.

Vyas, Jignesh 01 January 2006 (has links)
Moveable bridges in Florida typically use open steel grid decks due to the weight limitations. However, these decks present rideability, environmental, and maintenance problems, for they are typically less skid resistant than a solid riding surface, create loud noises, and allow debris to fall through the grids. Replacing open steel grid decks that are commonly used in moveable bridges with a low-profile FRP deck can improve rider safety and reduce maintenance costs, while satisfying the strict weight requirement for such bridges. The performance of the new deck system, which includes fatigue and failure tests were performed on full-size panels in a two-span configuration. The deck has successfully passed the preliminary strength and fatigue tests per AASHTO requirements. It has also demonstrated that it can be quickly installed and that its top plate bonds well with the wear surface. The thesis also describes the analytical investigation of a simplified finite element approach to simulate the load-deformation behavior of the deck system for both configurations. The finite element model may be used as a future design tool for similar deck systems. Loadings that were consistent with the actual experimental loadings were applied on the decks and the stresses, strains, and the displacements were monitored and studied. The results from the finite element model showed good correlation with the deflection and strain values measured during the experiments. A significant portion of the deck deflection under the prescribed loads is induced by vertical shear. This thesis presents the results from the experiments, descriptions of the finite element model and the comparison of the experimental results with the results from the analysis of the model.
56

Reclaiming Land Through Interstate Lids within the West End Community

Cieslak, Stephanie 25 May 2023 (has links)
No description available.
57

Installation and Field Testing of High Performance Repair Materials for Pavements and Bridge Decks

Lesak, Andrew 10 December 2014 (has links)
No description available.
58

STRENGTH REDUCTION OF BRIDGE DECKS WITH LOSS OF REINFORCEMENT CROSS-SECTIONAL AREA

Yunhui Jia (13164948) 29 July 2022 (has links)
<p>Bridge deck deterioration due to chloride-induced pitting corrosion of steel reinforcement is a common occurrence. Because rust decreases the cross-sectional area of reinforcing bars, corrosion of bridge deck reinforcement directly reduces the structural capacity of the bridge deck. A typical NDT method for assessing the possibility of corrosion at the top reinforcement level is ground-penetrating radar (GPR). The goal of the study is to investigate the effect of reducing the cross-sectional area of the reinforcing bar on deck strength due to corrosion. Flexural and shear failure were considered in the analysis. In conclusion, typical corrosion of reinforcement was not found to cause a bridge deck to collapse after testing the flexure with the yield line method, the one-way and two-way shears with AASHTO LRFD Bridge Design Specifications (2020), and the one-way shear with ACI 318 (2019). </p>
59

Stiffness and Strength of Fiber Reinforced Polymer Composite Bridge Deck Systems

Zhou, Aixi 07 November 2002 (has links)
This research investigates two principal characteristics that are of primary importance in Fiber Reinforced Polymer (FRP) bridge deck applications: STIFFNESS and STRENGTH. The research was undertaken by investigating the stiffness and strength characteristics of the multi-cellular FRP bridge deck systems consisting of pultruded FRP shapes. A systematic analysis procedure was developed for the stiffness analysis of multi-cellular FRP deck systems. This procedure uses the Method of Elastic Equivalence to model the cellular deck as an equivalent orthotropic plate. The procedure provides a practical method to predict the equivalent orthotropic plate properties of cellular FRP decks. Analytical solutions for the bending analysis of single span decks were developed using classical laminated plate theory. The analysis procedures can be extended to analyze continuous FRP decks. It can also be further developed using higher order plate theories. Several failure modes of the cellular FRP deck systems were recorded and analyzed through laboratory and field tests and Finite Element Analysis (FEA). Two schemes of loading patches were used in the laboratory test: a steel patch made according to the ASSHTO's bridge testing specifications; and a tire patch made from a real truck tire reinforced with silicon rubber. The tire patch was specially designed to simulate service loading conditions by modifying real contact loading from a tire. Our research shows that the effects of the stiffness and contact conditions of loading patches are significant in the stiffness and strength testing of FRP decks. Due to the localization of load, a simulated tire patch yields larger deflection than the steel patch under the same loading level. The tire patch produces significantly different failure compared to the steel patch: a local bending mode with less damage for the tire patch; and a local punching-shear mode for the steel patch. A deck failure function method is proposed for predicting the failure of FRP decks. Using developed laminated composite theories and FEA techniques, a strength analysis procedure containing ply-level information was proposed and detailed for FRP deck systems. The behavior of the deck's unsupported (free) edges was also investigated using ply-level FEA. / Ph. D.
60

Automated Characterization of Bridge Deck Distress Using Pattern Recognition Analysis of Ground Penetrating Radar Data

Scott, Michael L. 24 August 1999 (has links)
Many problems are involved with inspecting and evaluating the condition of bridges in the United States. Concrete bridge deck inspection and evaluation presents one of the largest problems. The deterioration of these concrete decks progresses more rapidly than any other bridge component, which leads to early concrete deck replacements that must be done before the bridge superstructure needs to be replaced. The primary cause of deterioration in these concrete bridge decks is corrosion-induced concrete cracking, which frequently results in delaminations. Delamination distress increases the life cycle cost of maintaining a concrete bridge deck, particularly when it is not detected early on. Early detection of delamination distress can facilitate economical repair and rehabilitation work, but bridge engineers must recommend deck replacement if repairs are delayed too long or inspection tools cannot detect delaminations early enough. The Federal Highway Administration has responded to the need for a better bridge deck inspection tool by contracting Lawrence Livermore National Laboratory to develop two new prototype ground penetrating radar systems. These two systems generate three-dimensional data that provide a representation of features that lie below the bridge deck surface. Both of these systems produce large amounts of data for an individual bridge deck, which makes automated data processing very desirable. The primary goal of the automated processing is to characterize bridge deck distress represented in the data. This study presents data collected from sample bridge deck sections using one of the prototype systems. It also describes the development and implementation of appropriate methods for automating data processing. The automated data processing is accomplished using image processing and pattern recognition algorithms developed in the study. / Ph. D.

Page generated in 0.0245 seconds