1 |
Synthesis and Characterization of Deep Eutectic Solvents (DES) with Multifunctional Building BlocksLo, Yi-Ting 06 September 2019 (has links)
No description available.
|
2 |
Electrodeposition of reactive metals and alloys from non-aqueous electrolytes and their applications / 非水系電解浴を用いる活性金属および合金の電析とその応用Higashino, Shota 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(エネルギー科学) / 甲第22798号 / エネ博第412号 / 新制||エネ||79(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー応用科学専攻 / (主査)教授 平藤 哲司, 教授 土井 俊哉, 教授 馬渕 守 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM
|
3 |
REDOX ORGANIC DEEP EUTECTIC SOLVENT ELECTROLYTES FOR ADVANCED ENERGY STORAGESinclair, Nicholas January 2022 (has links)
No description available.
|
4 |
Non-Covalent Interactions in Polymeric Materials: From Ionomers to Polymer BlendsJu, Lin 17 September 2019 (has links)
Conventional studies of ionomers have focused on ionomers bearing monovalent carboxylate or sulfonate pendant ions. There are relatively fewer studies on ionomers containing multivalent pendant ions, such as divalent phosphonate. In this dissertation, poly(ethylene terephthalate) (PET) and polystyrene ionomers with divalent phosphonate pendant ions have been synthesized, and the influence of divalent phosphonate pendant ions on the structure-morphology-property relationship has been compared to the ionomers with monovalent sulfonate pendant ions. The phosphonate groups generated a stronger physically crosslinked network in phosphonated ionomers as compared to sulfonated analogues. Higher plateau modulus, longer relaxation time, and significantly higher zero-shear viscosity were noted for phosphonated ionomers by a dynamic melt rheology study. Compared to the ionic aggregates generated from sulfonate groups, larger ionic aggregates with associated phosphonate groups have been observed. Furthermore, phosphonated ionomers displayed significantly higher glass transition temperatures than sulfonated ionomers.
Ionomers have proven to be attractive, interfacially active compatibilizers for a number of polymer blend systems because of specific interactions that may develop between the ionic groups and complementary functional groups on other polar polymers within the blends. The successful compatibilization of polyester/polyamide blends (prepared by solution mixing and melt blending methods) using phosphonated PET ionomers as a minor-component compatibilizer has been demonstrated. The phase-separated polyamide domain dimension decreased with increasing mol % phosphonated monomers and this decrease was attributed to the specific interactions between the ionic phosphonate groups on the polyester ionomer and the amide linkages of polyamide. More importantly, the divalent phosphonate pendant ions are more effective at compatibilizing polyester/polyamide blends in comparison to the monovalent sulfonate pendant ions. Phosphonated PET ionomer-compatibilized polyester/polyamide blends required 6 times fewer ionic monomers to achieve domain dimension < 1 μm as compared to sulfonated PET-containing blends.
Deep eutectic solvents (DES) have been reported to be the next generation solvents due to the superior biocompatibility, biodegradability, and sustainability as compared to ionic liquids. Two types of deep eutectic solvents, choline chloride : malic acid (ChCl:MA) and L-arginine : levulinic acid (Arg:LA), have been demonstrated as effective plasticizers for poly(vinyl alcohol) (PVOH) films. The plasticization effects on the properties of PVOH films were evidenced by lower crystallizability and improved film ductility. In addition, ChCl:MA deep eutectic solvent was more effective in plasticizing PVOH as compared to propylene glycol, one of the most widely studied alcohol-type plasticizers. From an applied perspective, DES-plasticized PVOH film is a promising candidate in the packaging market of heath-related products. / Doctor of Philosophy / Non-covalent interactions play an important role on the structure-morphology-property relationship of polymeric materials. Divalent phosphonate pendant ions provide interesting effects on the properties of ionomer and polymer blends as compared to the monovalent sulfonate pendant ions. Ionomers containing phosphonate pendant ions exhibit a significantly stronger physically crosslinked network as compared to sulfonated ionomers. Compared to monovalent sulfonate groups, the divalent phosphonate groups are more effective at compatibilizing polymer blends. Furthermore, the compatibilized poly(ethylene terephthalate)-based blends exhibit improved optical and oxygen barrier properties compared to the base blend without compatibilizer, signifying potential benefits in packaging industry.
Poly(vinyl alcohol) is one of the most widely used packaging materials for food, medicine, detergent, etc. The incorporation of deep eutectic solvents as plasticizers significantly improved film ductility. In addition, the plasticization effect for choline chloride-based deep eutectic solvent is more profound than one of the most widely studied alcohol-type plasticizers, propylene glycol. The effective plasticization of poly(vinyl alcohol) using deep eutectic solvents confirmed the potential for future applications in the packaging market of health-related product.
|
5 |
Lignocellulose deconstruction using glyceline and a chelator-mediated Fenton systemOrejuela, Lourdes Magdalena 15 December 2017 (has links)
Non-edible plant biomass (lignocellulose) is a valuable precursor for liquid biofuels, through the processes of pretreatment and saccharification followed by fermentation into products such as ethanol or butanol. However, it is difficult to gain access to the fermentable sugars in lignocellulose, and this problem is principally associated with limited enzyme accessibility. Hence, biomass pretreatments that destroy native cell wall structure and allows enzyme access are required for effective biomass conversion techniques. This research studied two novel pretreatment methods on two wood species: 1) a deep eutectic solvent (DES) that, under heat, swells lignocellulose and partially solubilizes cell wall materials by causing breakage of lignin-carbohydrate linkages and depolymerization of the biomass components, and 2) a chelator-mediated Fenton reaction (CMF) that chemically modifies the nanostructure of the cell wall through a non-enzymatic cell wall deconstruction. After pretreatment, utilizing analytical techniques such as nuclear magnetic spectroscopy, wide angle x-ray scattering, and gel permeation chromatography, samples were analyzed for chemical and structural changes in the solubilized and residual materials.
After single stage DES (choline-chloride-glycerol) and two stage, CMF followed by DES pretreatments, lignin/carbohydrate fractions were recovered, leaving a cellulose-rich fraction with reduced lignin and hemicellulose content as determined by compositional analysis. Lignin and heteropolysaccharide removal by DES was quantified and the aromatic-rich solubilized biopolymer fragments were analyzed as water insoluble high molecular weight fractions and water-ethanol soluble low molecular weight compounds. After pretreatment for the hardwood sample, enzyme digestibility reached a saccharification yield of 78% (a 13-fold increase) for the two stage (DES/CMF) pretreated biomass even with the presence of some lignin and xylan remained on the pretreated fiber; only a 9-fold increase was observed after the other sequence of CMF followed by DES treatment. Single stage CMF treatment or single stage DES pretreatment improved 5-fold glucose yield compared to the untreated sample for the hardwood sample. The enhancement of enzymatic saccharification for softwood was less than that of hardwoods with only 4-fold increase for the sequence CMF followed by DES treatment. The other sequence of treatments reached up to 2.5-fold improvement. A similar result was determined for the single stage CMF treatment while the single stage DES treatment reached only 1.4-fold increase compared to the untreated softwood. Hence, all these pretreatments presented different degrees of biopolymer removal from the cell wall and subsequent digestibility levels; synergistic effects were observed for hardwood particularly in the sequence DES followed by CMF treatment while softwoods remained relatively recalcitrant. Overall, these studies revealed insight into two novel methods to enhance lignocellulosic digestibility of biomass adding to the methodology to deconstruct cell walls for fermentable sugars. / Ph. D. / Wood is a valuable material that can be used to produce liquid biofuels. Wood main components are biopolymers cellulose, hemicellulose and lignin that form a complex structure. Nature has locked up cellulose in a protective assembly that needs to be destroyed to gain access to cellulose, convert it to glucose and then ferment it to bioalcohol. This process is principally associated with limited enzyme accessibility. Therefore, biomass pretreatments that deconstruct native cell wall structure and allow enzyme access are required for effective biomass conversion techniques. This research studied two novel pretreatment methods on two wood species: 1) a deep eutectic solvent called glyceline that, under heat, swells wood and partially solubilizes cell wall materials by causing breakage of bonds and converting it into smaller molecules (monomers and oligomers), and 2) a chelator-mediated Fenton system (CMF) that chemically modifies the structure of the cell wall. Pretreatments were tested individually and in sequence in sweetgum and southern yellow pine. After pretreatments, utilizing analytical techniques, fractions were investigated for chemical and structural changes in the solubilized and residual materials. Treated wood samples were exposed to enzymatic conversion. A maximum 78% of glucose yield was obtained for the glyceline followed by CMF pretreated wood. For yellow pine only a 24% of glucose yield was obtained for the CMF followed by glyceline treatment. All these pretreatments presented different degrees of biopolymer removal from the cell wall and subsequent enzyme conversion levels. Overall, these studies revealed insight into two novel methods to enhance wood conversion adding to the methodology to deconstruct cell walls for fermentable sugars.
|
6 |
Dispersão de nanopartículas magnéticas em meios complexos biodegradáveis / Dispersion et propriétés colloïdales des fluides magnétiques biodégradablesKern Barreto, Cynara Caroline 27 October 2016 (has links)
Les nanocolloïdes magnétiques sont des dispersions de nanostructures magnétiques dans un liquide porteur. Par la combinaison des propriétés du liquide et des particules magnétiques, ces dispersions peuvent être confinées, déplacées, déformées et contrôlées par l'application d'un champ magnétique externe et ont ainsi de nombreuses applications en nanosciences et les nanotechnologies. Nous avons étudié la dispersion de nanoparticules magnétiques (NPM) dans les solvants eutectiques profonds (DES). Ces solvants, constitués d'un mélange entre un sel d'ammonium (ici le chlorure de choline (Ch) et un donneur de liaison H (ici, l'ethyleneglycol (EG) ou l'urée (U)) ont des propriétés proches des liquides ioniques tout en étant biodégradables. L'un des verrous concernant ces dispersions est la nature des forces impliquées dans la stabilité colloïdale. En effet, on ne peut plus expliquer la stabilité des dispersions dans ces milieux par le modèle DLVO, classiquement utilisé dans l'eau, du fait de leur force ionique élevée. Nous avons dans en premier temps caractérisé soigneusement deux DES (ChEH (1:3) et ChU (1:2) en mol) du point de vue de la densité et viscosité pour des températures entre 20 et 45°C. Ceci nous a permis de montrer la forte association de ces liquides. Un protocole de dispersion de nanoparticules de maghémite (Fe2O3) ou de ferrite mixte (CoxZn1-xFe2O4) est ensuite proposé, et les dispersions sont étudiées par diffusion de rayonnement (lumière et SAXS). Il s'est avéré que les particules les plus petites étaient les mieux dispersées. Enfin, un test de synthèse de NPM dans des solutions d'argile a permis d'obtenir une polydispersité plus faible en sortie de synthèse. / Magnetic nanocolloids are dispersions of magnetic nanostructures in a carrier fluid. Thanks to the original properties of both the liquid and the magnetic particles, these dispersions can be confined, moved, deformed and controlled by applying an external magnetic field. Such dispersions thus have many applications in nanoscience and nanotechnologies.We studied the dispersion of magnetic nanoparticles in deep eutectic solvents (DES). These solvents (DES), obtained by mixing a quaternary ammonium salt (e.g., choline chloride Ch) and a hydrogen bond donor (e.g., ethyleneglycol EG or Urea U) have properties similar to ionic liquids, and are also biodegradable. One of the questions about these dispersions is the nature of the forces implied in colloidal stability, since the DLVO model classically used in water cannot be invoked here due to the very high ionic strength of the solvent.In a first step, we have carefully characterized two DES ((ChEG (1:3) and ChU (1:2) in mol), measuring the density and viscosity for temperatures between 20 and 45°C. We could thus show the high association in these liquids.A protocol to disperse nanoparticles of maghemite (Fe2O3) or mixed ferrite (CoxZn1-xFe2O4) is then proposed, and the obtained dispersions are studied by dynamic light scattering and SAXS. The size polydispersity was reduced by size sorting, and it reveals that the smallest particles are the most easy to disperse in the DES.Last, a synthesis of NMP in clay dispersion was tested and showed promising results with a reduced size polydispersity.
|
7 |
Model Chemistry Study Of Choline And Urea Based Deep Eutectic SolventsKellat, Libby Nicole 18 December 2018 (has links)
No description available.
|
8 |
Dispozice a metabolismus kanabinoidů. / Disposition and metabolism of cannabinoids.Hložek, Tomáš January 2019 (has links)
This thesis describes in the form of a commentary on own original publications research on the problems of cannabinoids, ie. phytocannabinoids and some synthetic cannabinoids, their pharmacokinetics and effects. The work consists of four thematic areas: the pharmacokinetics of delta-9- tetrahydrocannabinol (THC) and cannabidiol (CBD) in rats, depending on the route of administration; THC concentration time profile in humans (after inhalation) and implications for transport safety; the pharmacokinetic profile of synthetic cannabinoids in rats; extraction and determination of phytocannabinoids in plant material. The first part of the thesis was to determine pharmacokinetic profiles of THC, CBD and combination thereof (1:1 weight ratio) in rats with respect to administration common in humans, i.e. inhalation, oral and subcutaneous administration. THC, its metabolites (11-hydroxy-tetrahydrocannabinol, 11-OH-THC; 11-nor-delta-9- carboxytetrahydrocannabinol, THCOOH) and CBD concentrations in serum and brains of animals were monitored at the 24 hours experimental interval during the study. Except for inhalation administration, co-administration of CBD inhibited THC metabolism (after both oral and subcutaneous), resulting in an increase in THC concentrations in both serum and brain of the rats relative to...
|
9 |
Electrolytes pour supercondensateurs asymétriques à base de MnO2 / Electrolytes for asymmetrical MnO2 supercapacitorsBoisset, Aurelien 15 July 2014 (has links)
Cette thèse a pour but de caractériser le fonctionnement de supercondensateurs asymétriques composés de dioxyde de manganèse de structure birnessite et de carbone activé dans différents électrolytes. Les électrolytes aqueux neutres à base de sels inorganiques montrent les meilleures performances électrochimiques. La nature et la structure des cations et des anions du sel semblent impacter les performances électrochimiques et la stabilité de la structure du matériau d’oxyde de manganèse. Lors de cyclage en milieu aqueux avec de large de fenêtre de tension de fonctionnement appliquée, un mécanisme de dégradation du dispositif a été avancé tenant compte de la nature des anions ou des cations des sels utilisés. Quelques voies de modification du matériau MnO2, afin d’améliorer ces performances électrochimiques, ont été étudiés. Des électrolytes non aqueux originaux ont été également caractérisés et plus particulièrement, les solvants « Deep Eutectic » à base de N-méthylacétamide et de sels de Lithium. Ces derniers semblent prometteurs comme électrolytes pour des applications en température sur carbone activé ou matériaux d’insertion tels que le ferrophosphate de lithium. Cependant ils semblent non adaptés aux oxydes de manganèse, mais donnent de bons résultats en cyclage avec le carbone activé. / The aim of this thesis was to investigate the performances of asymmetric supercapacitors based on manganese dioxide (birnessite) and activated carbon electrode materials using various electrolytes. From this work, it appears that neutral aqueous electrolytes containing inorganic salts have the best electrochemical performances. Furthermore, the nature and the structure of both ions (cations and anions) in solution seem to impact strongly the electrochemical performances of the supercapacitors, as well as, the MnO2’s structure stability and affinity. In the case of aqueous-based electrolyte, a device degradation mechanism has been proposed as a function of salt ions structure and nature to further understand the supercapacitor’s life-cycling when a large potential window is applied. Some novel synthesis ways and/or modifications were investigated to further improve the electrochemical properties of MnO2 material. Additionaly, original non-aqueous electrolytes has been also formulated and then characterized, particularly the ‘Deep Eutectic’ Solvents, based on the N-methylacetamide mixed with a lithium salt. However, these electrolytes don’t have a good affinity with manganese oxide-based materials. Interestingly, these Deep Eutectic Solvents show good cycling results with activated carbon. In fact, these electrolytes seem to be promising for high temperature energy storage applications, especially using activated carbon or insertion electrode material like the lithium ferrophosphate.
|
10 |
Captage du CO2 par des amines en milieu aqueux et non aqueux (solvant eutectique profond) / CO2 capture by amines in aqueous and non-aqueous media (deep eutectic solvent)Mahi, Mohammed Ridha 09 July 2019 (has links)
Ce travail porte sur l'étude de la capacité d'absorption du CO2 par différents types d'amines dissoutes en milieux aqueux et non aqueux. Ce dernier est constitué d'un mélange de chlorure de choline et d'éthylène glycol dans une proportion molaire respectivement de 1 pour 2. Ce solvant, communément appelé "Ethaline", appartient à la catégorie dite des « Solvants à Eutectique Profond » ainsi désignés car leur composition eutectique permet d'obtenir des mélanges généralement liquides à température ambiante. Pour ce faire un appareil d'équilibre liquide-vapeur avec analyse en ligne de la phase vapeur par GC a été réalisé et son fonctionnement validé. Les isothermes d'absorption du CO2 ainsi que la volatilité (composition de la phase vapeur) des mélanges étudiés, avec et sans CO2, ont été déterminées à différentes températures et pour différentes compositions en amines. Le domaine de pression exploré est particulièrement large : du Pascal à 800 kPa. L'étude a montré que la substitution de l'eau par "l'Ethaline" conduit à une capacité d'absorption du CO2 presque identique à celle de la MEA et DEA en solution aqueuse. Par contre dans le cas de la MDEA on observe une capacité d'absorption plus faible en milieu « Ethaline » qu'en milieu aqueux. Les isothermes d'absorption du CO2 des trois classes d'amines en milieu aqueux et non aqueux ont été corrélés par les modèles semi empiriques de (Gabrielsen et al., 2005) initialement établis par ces auteurs pour les solutions aqueuses (un modèle pour les amines primaires et secondaires conduisant à la formation de carbamates en présence de CO2, un modèle pour les amines tertiaires donnant des sels d'ammonium avec le CO2). Nous avons montré que ces deux modèles représentent avec succès les isothermes d'absorption en milieu non aqueux. Les constantes d'équilibre et les enthalpies de réaction qui s'en déduisent montrent que ces dernières sont plus faibles (en valeur absolue) pour la MEA et TMDEA en solution éthaline qu'en solution aqueuse. Dans le cas de la MDEA la nature du solvant n'a qu'une influence minime sur l'enthalpie de réaction. Les valeurs expérimentales des volatilités des amines dans les différents mélanges Amine- CO2 en milieu aqueux ont été corrélées par différents modèles semi-empiriques. Trois modèles thermodynamiques de coefficients d'activité ; le modèle de Wilson, NRTL et UNIQUAC ont été utilisés afin de restituer les données expérimentales de l'équilibre liquide-vapeur des systèmes aqueux d'amines (sans CO2). Une représentation satisfaisante des résultats expérimentaux par les trois modèles a été obtenue / This work focuses on the study of the absorption capacity of CO2 by different types of dissolved amines in aqueous and non-aqueous media. The latter consists of a mixture of choline chloride and ethylene glycol in a molar proportion of 1 to 2 respectively. This solvent, commonly called "Ethaline", belongs to the category called "Deep Eutectic Solvents" so designated because their eutectic composition makes it possible to obtain mixtures that are generally liquid at room temperature. With this aim, a liquid-vapor equilibrium apparatus with on-line analysis of the vapor phase by GC was performed and its operation validated. The CO2 absorption isotherms and the volatility (composition of the vapor phase) of the studied mixtures, with and without CO2, were determined at different temperatures and for different amine compositions. The explored pressure range is particularly large: from 1 Pa to 800 kPa. The study showed that the substitution of water by "Ethaline" leads to a CO2 absorption capacity almost identical to that of MEA and DEA in aqueous solution. On the other hand, in the case of MDEA, a lower absorption capacity is observed in Ethaline than in aqueous medium. In the hypothesis of a use of the DES+amine solvent for CO2 capture in post-combustion process, a decrease of the vapor pressure of the solvent (comparing to that of water+amine) has an advantage because of the low solvent loss due to vaporization in the absorber. The second advantage is most likely a lower effect of equipment corrosion, the third positive point is a lower enthalpy of absorption of MEA and MDEA in (1 ChCl : 2 EG) comparing to aqueous medium, resulting in a possible saving of energy in the regenerator of almost 40%. The disadvantage of the use of amines in "Ethaline" solution is the high viscosity of this solvent which decreases the kinetics of material transfer and reaction with CO2. The CO2 absorption isotherms and the experimental values of the amine volatilities in the different Amine-H2O-CO2 mixtures were well correlated by different semi-empirical models. Three thermodynamic models based on the activity coefficients; the Wilson model, NRTL and UNIQUAC were used to restitute experimental data for the liquid-vapor equilibrium of aqueous amine systems (without CO2). A satisfactory representation of the experimental results by the three models was obtained
|
Page generated in 0.0218 seconds