• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Developing a Validated Model for Predicting Grain Damage Using DEM

Zhengpu Chen (7036694) 12 October 2021 (has links)
<p>Grain kernel damage during harvesting and handling continues to be a challenge in grain postharvest operations. The damage causes physical and physiological changes to grain, which reduces the grain quality and leads to significant yield loss. During harvesting and handling, grain kernels are subject to complex loading conditions consisting of a combination of impact, shear, and compression forces that can result in mechanical damage. Although there is considerable empirical data focused on kernel damage, there is a lack of generalizable mechanics-based predictive models. Mechanics-based models are desirable since they would be useful for providing guidance on designing and operating grain handling processes to minimize kernel damage and, thus, improve grain quality. The objective of the current study is to develop a mechanics-based model for predicting damage of corn and wheat kernels using the discrete element method (DEM).</p> <p>The first step in DEM modeling is to determine the model input parameter values. This step is critical since the accuracy of the DEM simulations model is greatly affected by these parameters. The input parameters for the model developed in this current study are the physical and mechanical properties of corn and wheat kernels. These properties were determined by either direct measurement or calibration tests and validated with bulk material tests. X-ray micro-CT scanning method was used to acquire the grain kernel particle shape representation. The coefficient of friction (COF) was measured using a reciprocating pin tribometer. The coefficient of restitution (COR) was measured using the calibration method with a box containing multiple bins. The measured model parameter values were used to simulate common bulk material tests, i.e. bulk density and angle of repose. A comparison was made between the simulated results and the experimental measurements. The low percent error between experimental and simulated values indicate the accurate model parameter values estimation.</p> <p>The damage resistance of corn and wheat kernels to compression, friction, and repeated impacts were measured using the universal testing machine, pin-on-disk tribometer, and Wisconsin breakage tester, respectively. Lognormal distribution was used to model the compression test data, and three-parameter Weibull distribution was used to model the single and repeated impact test data. The statistical models were able accurately predict the damage probability based on the loading force or input energy. The wear damage was insignificant for corn-acrylic, corn-steel, and wheat-acrylic wear tests. For wheat-steel wear test, the average work done by the friction force to cause pericarp damage was 3.85 1.50 J. The test results showed that the corn kernels were more susceptible to impact loading, while wheat kernels were more susceptible to compression loading. Both corn and wheat kernels had high resistance to wear damage.</p> <p>The statistical model that predicts the impact damage probability based on impact energy was implemented in DEM. Stein breakage tester was used to validate the developed model. The damage level of the samples was then evaluated and compared with the predicted damage level output by the DEM simulation using the measured input parameters. However, it was found that the DEM simulation prediction error of damage level was high when the input parameters characterized by the Wisconsin breakage tester were used. The parameters were then recalibrated using Stein breakage tester. The model was able to give a good prediction on the damage fraction at different sample size and time levels when the recalibrated parameter values were used.</p>
2

Dry Deshaling of Thermal Coals in India

Gupta, Nikhil 14 November 2011 (has links)
Beneficiation of thermal coal in India is a relatively new development. For the year 2006, India produced 380 million metric tons of thermal coal, of which only 17 million metric tons were beneficiated coals. One potentially attractive method for upgrading India's coal feed stocks is the air table dry deshaling technology. Dry deshaling offers significant advantages over wet cleaning operations, including reduced surface moisture, enhanced heating value, elimination of processing water and waste slurries, and reduced transportation of large amounts of ash-forming minerals. To evaluate this potential, a pilot-scale air table deshaling unit was tested at three locations in India for the specific purpose of upgrading thermal coals. The field testing confirmed that the separation performance for Indian coals is similar to that which has been achieved at sites in the United States for material in the 50 x 6 mm size range. The data indicate that material with 80% ash and higher can be rejected by the dry deshaler unit with a combustible recovery of more than 90%. Furthermore, a discreet elemental model was developed using PFC3D to understand the process of segregation on a dry density based vibratory table. Analysis was done to show the effect of different forces on the process efficiency. Also, operating parameters and particle properties such as frequency of vibrations, amplitude of velocity, bed depth, particle size and specific gravity were analyzed in the model. The model results were compared with field testing results of dry deshaling air table and All-Air Jig separator. / Master of Science
3

Conception en voie sèche de catalyseurs propres Co/Al2O3 pour la synthèse Fischer-Tropsch et modélisation numérique DEM / Design of Co/Al2O3 solid catalysts for Fischer-Tropsch synthesis and DEM modelization

Liu, Xuemei 06 November 2018 (has links)
Ce travail de thèse concerne l’application d’une nouvelle technologie de préparation de catalyseurs propres Co/Al2O3 pour la synthèse de Fischer Tropsch (FT). Les matériaux sont préparés à l’aide d’un procédé de revêtement à sec dans un mélangeur à haut cisaillement le «Picomix». Les conditions opératoires, les supports en alumine, la taille des cristallites de cobalt et la teneur en charge de cobalt ont été optimisés pour augmenter l’activité catalytique du Co/Al2O3. De même, une modélisation DEM a été effectuée pour décrire le comportement des poudres dans le mélangeur. Les résultats expérimentaux montrent une très bonne adhésion des nanoparticules de Co3O4 à la surface des particules de Al2O3 pour une vitesse de rotation élevée pendant une courte période. Les particules γ-Al2O3 traitées thermiquement présentent une résistance mécanique améliorée des catalyseurs, mais une activité catalytique relativement faible. La taille des cristallites de Co3O4 a diminué de 64nm à 11nm après broyage dans un broyeur à boulets planétaire à 600 rpm/min pendant 40h. Enfin, le catalyseur optimal a été obtenu à 5000 rpm/min pendant 5min avec 5% en poids de cobalt. Le catalyseur obtenu présente des résultats catalytiques : conversion élevée en CO (37%) , sélectivité élevée en hydrocarbures en C5+ (75%) et faible sélectivité en CH4 (13%) à 250oC. La modélisation numérique par DEM a révélé que les paramètres liés aux conditions opératoires, la géométrie du dispositif et aux propriétés intrinsèques des particules avaient un impact sur le comportement des particules et la qualité de l’enrobage des matériaux / This thesis concerns the application of a novel preparation technology for Co/Al2O3 clean catalysts applied in Fischer Tropsch (FT) synthesis. The catalysts were prepared using a dry coating process in a high shear mixer “Picomix”. The operating conditions, alumina supports, cobalt crystallite size and cobalt loading content were optimized to increase the catalytic activity of Co/Al2O3 catalysts. Besides, DEM modeling was performed to describe the behavior or powders in the mixer. Experimental results showed a very good adhesion of the nano Co3O4 particles on the surface of Al2O3 particles after processed in the mixer under a high rotational speed and a short time. The heat-treated Al2O3γ particles presented enhanced mechanical strength of catalysts, however, exhibited relatively low catalytic activity. The Co3O4 crystallite size decreased from 64 nm to 11 nm after milling in planetary ball mill under 600 rpm for 40 h. Finally, the optimal catalyst was prepared by mixing milled-Co3O4 and Al2O3γ particles in “Picomix” under 5000 rpm for 5 min with 5 wt.% of Co. The obtained catalyst presented high CO conversion (37 %), high C5+ hydrocarbons selectivity (75 %) and low CH4 selectivity (13 %) in FT synthesis reaction at 250 oC. The DEM mumerical modeling revealed that the parameters related to operating condition, device geometry, and particle intrinsic properties had an impact on particle behavior and coating quality of materials
4

Modellierung der Zerkleinerung in Profilwalzenbrechern

Schmidt, Marko 25 May 2011 (has links) (PDF)
Für die Weich- und Mittelhartzerkleinerung von Primär- und Sekundärrohstoffen werden zunehmend Profilwalzenbrecher eingesetzt. Trotz relativ geringer Zerkleinerungsgrade zeichnen sie sich durch einen geringen spezifischen Leistungsbedarf, hohe Durchsätze, eine einfache Konstruktion und Instandhaltung sowie eine störungsfreie Betriebsweise aus und sind auch bei adhäsivem Aufgabematerial anwendbar. Trotz der Bedeutung dieser Maschinen gibt es bisher nur unzureichende Auslegungsmethoden. Die theoretisch begründete Modellierung der Zerkleinerung in markant profilierten Walzenbrechern ist deshalb Gegenstand dieser Arbeit, um dadurch die Dimensionierungsgrundlagen zu verbessern und Einsatzmöglichkeiten in der Hartzerkleinerung abzuschätzen. Dazu werden im Rahmen einer Systembetrachtung zunächst die wesentlichen Prozessparameter der Zerkleinerung ermittelt und die Bauarten von Profilwalzenbrechern klassifiziert (Kapitel 2). Die Darstellung der bekannten Berechnungsmodelle für die Hauptzielgrößen „Grenzdurchsatz“, „Produktgranulometrie“ und „Leistungsbedarf“ ist Gegenstand von Kapitel 3. Darauf aufbauend wird in Kapitel 4 ein neues, physikalisch begründetes Auslegungsmodell vorgestellt und das Untersuchungsfeld hinsichtlich der zu analysierenden Aufgabestoffart und Maschinengeometrie eingegrenzt. Die für dieses Modell erforderlichen Zerkleinerungstest- und Simulationsergebnisse werden in Kapitel 5 und 6 dargestellt, bevor die Arbeit in Kapitel 7 mit einer Zusammenfassung und einem Ausblick abschließt.
5

Modellierung der Zerkleinerung in Profilwalzenbrechern

Schmidt, Marko 25 March 2011 (has links)
Für die Weich- und Mittelhartzerkleinerung von Primär- und Sekundärrohstoffen werden zunehmend Profilwalzenbrecher eingesetzt. Trotz relativ geringer Zerkleinerungsgrade zeichnen sie sich durch einen geringen spezifischen Leistungsbedarf, hohe Durchsätze, eine einfache Konstruktion und Instandhaltung sowie eine störungsfreie Betriebsweise aus und sind auch bei adhäsivem Aufgabematerial anwendbar. Trotz der Bedeutung dieser Maschinen gibt es bisher nur unzureichende Auslegungsmethoden. Die theoretisch begründete Modellierung der Zerkleinerung in markant profilierten Walzenbrechern ist deshalb Gegenstand dieser Arbeit, um dadurch die Dimensionierungsgrundlagen zu verbessern und Einsatzmöglichkeiten in der Hartzerkleinerung abzuschätzen. Dazu werden im Rahmen einer Systembetrachtung zunächst die wesentlichen Prozessparameter der Zerkleinerung ermittelt und die Bauarten von Profilwalzenbrechern klassifiziert (Kapitel 2). Die Darstellung der bekannten Berechnungsmodelle für die Hauptzielgrößen „Grenzdurchsatz“, „Produktgranulometrie“ und „Leistungsbedarf“ ist Gegenstand von Kapitel 3. Darauf aufbauend wird in Kapitel 4 ein neues, physikalisch begründetes Auslegungsmodell vorgestellt und das Untersuchungsfeld hinsichtlich der zu analysierenden Aufgabestoffart und Maschinengeometrie eingegrenzt. Die für dieses Modell erforderlichen Zerkleinerungstest- und Simulationsergebnisse werden in Kapitel 5 und 6 dargestellt, bevor die Arbeit in Kapitel 7 mit einer Zusammenfassung und einem Ausblick abschließt.:Symbolverzeichnis III Tabellenverzeichnis XX Abbildungsverzeichnis XXI 1 Einleitung und Problemstellung 1 2 Systemanalyse von Profilwalzenbrechern 3 2.1 Einfluss- und Zielgrößen von Profilwalzenbrechern 3 2.2 Systematisierung und Einordnung von Profilwalzenbrechern 7 2.2.1 Klassifizierung von Profilwalzenbrechern 8 2.2.1.1 Klassifizierung nach konstruktiven Maschinenparametern 9 2.2.1.2 Klassifizierung nach der Belastungsart 18 2.2.2 Abgrenzung von Profilwalzenbrechern 25 3 Erkenntnisstand zur Zerkleinerung in Profilwalzenbrechern 29 3.1 Wertebereiche der Einfluss- und Zielgrößen von Profilwalzenbrechern 29 3.2 Auslegungsmodelle von Profilwalzenbrechern 32 3.2.1 Ermittlung des Grenzdurchsatzes 32 3.2.1.1 Einzugsbedingung für das Einzelkorn 32 3.2.1.2 Theoretisch begründete Ansätze für den Grenzdurchsatz 38 3.2.1.3 Empirische Ansätze für den Grenzdurchsatz 47 3.2.2 Ermittlung der Produktkorngrößenverteilung 49 3.2.3 Ermittlung des Leistungsbedarfs 54 3.2.3.1 Theoretisch begründete Ansätze für den Leistungsbedarf 57 3.2.3.2 Empirische Ansätze für den Leistungsbedarf 68 3.3 Wertung des Erkenntnisstandes und Präzisierung der Aufgabenstellung 75 4 Neues Auslegungsmodell für Profilwalzenbrecher 77 4.1 Aufbau des Modells 77 4.2 Voruntersuchungen zu den Einflussgrößen des Modells 78 4.2.1 Analyse maschinenbezogener Parameter 78 4.2.1.1 Primäroptimierung der Profilwalzengeometrie 79 4.2.1.2 Sekundäroptimierung der Profilwalzengeometrie 86 4.2.2 Analyse aufgabestoffbezogener Parameter 95 4.2.3 Analyse systembezogener Parameter 99 4.3 Bestimmung der Zielgrößen des Modells 101 4.3.1 Simulation der Einzelkornzerkleinerung in einem Modellwalzenbrecher 101 4.3.2 Aggregation der Simulationsergebnisse auf die Massestromzerkleinerung 102 4.3.3 Skalierung der Simulationsergebnisse auf den Originalwalzenbrecher 110 5 Zerkleinerungsversuche für das neue Auslegungsmodell 115 5.1 Grundlagen zur Einzelkorndruckzerkleinerung 115 5.1.1 Physikalische Beschreibung von Deformations- und Bruchprozessen 115 5.1.2 Empirische Analyse von Deformations- und Bruchprozessen 121 5.1.2.1 Einfluss- und Zielgrößen der Einzelkorndruckzerkleinerung 121 5.1.2.2 Korngrößeneffekt der Einzelkorndruckzerkleinerung 124 5.1.2.2.1 Versuchsergebnisse zum Korngrößeneffekt 124 5.1.2.2.2 Mathematisch-statistische Ansätze zum Korngrößeneffekt 128 5.2 Experimentelle Untersuchungen zur Einzelkorndruckzerkleinerung 132 5.2.1 Aufbau der Versuchsapparaturen 132 5.2.2 Durchführung der Versuche 134 5.2.3 Auswertung der Versuche 136 6 DEM-Simulationen für das neue Auslegungsmodell 141 6.1 Grundlagen zur DEM-Simulation 141 6.1.1 Beschreibung der DEM 141 6.1.2 Bisherige DEM-Simulationen von Zerkleinerungsprozessen 151 6.2 Kalibrierung des DEM-Gesteinsmodells 154 6.2.1 Statistische Simulationsplanung 156 6.2.2 Simulationsdurchführung 159 6.2.3 Voroptimierung 161 6.2.4 Nachoptimierung 164 6.3 Walzenbrechersimulationen mit dem kalibrierten DEM-Gesteinsmodell 166 6.3.1 Aufbau des Walzenbrechersimulationsprogramms 166 6.3.2 Ergebnisse der Walzenbrechersimulationen 169 6.3.2.1 Simulationsergebnisse zum Massedurchsatz des Walzenbrechers 169 6.3.2.2 Simulationsergebnisse zur Produktkorngrößenverteilung des Walzenbrechers 171 6.3.2.3 Simulationsergebnisse zum Leistungsbedarf des Walzenbrechers 174 7 Zusammenfassung und Ausblick 178 Literaturverzeichnis XXIV Anlagenverzeichnis XXXV

Page generated in 0.0456 seconds