Spelling suggestions: "subject:"brecher < aufbereitung> "" "subject:"brecher < erzaufbereitung> ""
1 |
Contribution to the capacity determination of semi-mobile in-pit crushing and conveying systemsRitter, Robert 04 January 2017 (has links) (PDF)
As ore grades decline, waste rock to ore ratios increase and mines become progressively deeper mining operations face challenges in more complex scenarios. Today´s predominant means of material transport in hard-rock surface mines are conventional mining trucks however despite rationalisation efforts material transportation cost increased significantly over the last decades and currently reach up to 60% of overall mining. Thus, considerations and efforts to reduce overall mining costs, promise highest success when focusing on the development of more economic material transport methods.
Semi-mobile in-pit crusher and conveyor (SMIPCC) systems represent a viable, safer and less fossil fuel dependent alternative however its viability is still highly argued as inadequate methods for the long term projection of system capacity leads to high uncertainty and consequently higher risk.
Therefore, the objective of this thesis is to develop a structured method for the determination of In-pit crusher and conveyor SMIPCC system that incorporates the random behaviour of system elements and their interaction. The method is based on a structured time usage model specific to SMIPCC system supported by a stochastic simulation.
The developed method is used in a case study based on a hypothetical mine environment to analyse the system behaviour with regards to time usage model component, system capacity, and cost as a function of truck quantity and stockpile capacity. Furthermore, a comparison between a conventional truck & shovel system and SMIPCC system is provided.
Results show that the capacity of a SMIPCC system reaches an optimum in terms of cost per tonne, which is 24% (22 cents per tonne) lower than a truck and shovel system. In addition, the developed method is found to be effective in providing a significantly higher level of information, which can be used in the mining industry to accurately project the economic viability of implementing a SMIPCC system.
|
2 |
Modellierung der Zerkleinerung in ProfilwalzenbrechernSchmidt, Marko 25 May 2011 (has links) (PDF)
Für die Weich- und Mittelhartzerkleinerung von Primär- und Sekundärrohstoffen werden zunehmend Profilwalzenbrecher eingesetzt. Trotz relativ geringer Zerkleinerungsgrade zeichnen sie sich durch einen geringen spezifischen Leistungsbedarf, hohe Durchsätze, eine einfache Konstruktion und Instandhaltung sowie eine störungsfreie Betriebsweise aus und sind auch bei adhäsivem Aufgabematerial anwendbar. Trotz der Bedeutung dieser Maschinen gibt es bisher nur unzureichende Auslegungsmethoden. Die theoretisch begründete Modellierung der Zerkleinerung in markant profilierten Walzenbrechern ist deshalb Gegenstand dieser Arbeit, um dadurch die Dimensionierungsgrundlagen zu verbessern und Einsatzmöglichkeiten in der Hartzerkleinerung abzuschätzen. Dazu werden im Rahmen einer Systembetrachtung zunächst die wesentlichen Prozessparameter der Zerkleinerung ermittelt und die Bauarten von Profilwalzenbrechern klassifiziert (Kapitel 2). Die Darstellung der bekannten Berechnungsmodelle für die Hauptzielgrößen „Grenzdurchsatz“, „Produktgranulometrie“ und „Leistungsbedarf“ ist Gegenstand von Kapitel 3. Darauf aufbauend wird in Kapitel 4 ein neues, physikalisch begründetes Auslegungsmodell vorgestellt und das Untersuchungsfeld hinsichtlich der zu analysierenden Aufgabestoffart und Maschinengeometrie eingegrenzt. Die für dieses Modell erforderlichen Zerkleinerungstest- und Simulationsergebnisse werden in Kapitel 5 und 6 dargestellt, bevor die Arbeit in Kapitel 7 mit einer Zusammenfassung und einem Ausblick abschließt.
|
3 |
Beitrag zur Modellierung eines Doppelwalzenbrechers hinsichtlich der Produktpartikelgrößenverteilung und des MassestromesThiere, Philipp 02 December 2020 (has links)
Zur Auslegung von profilierten Doppelwalzenbrechern werden bisher recht einfache Modelle verwendet, wobei wichtige Einflussfaktoren unberücksichtigt bleiben. Daher werden im Rahmen dieser Dissertation auf Basis experimenteller Untersuchungen verbesserte Auslegungsmodelle für die wichtigsten Zielgrößen von Doppelwalzenbrechern entwickelt, welche präzisere Prognosen ermöglichen. Das Versuchsprogramm sieht dabei die Variation von Aufgabematerial sowie –partikelgröße, Walzenumfangsgeschwindigkeit und Spaltweite in einem großen Wertebereich vor. Das zur Prognose der Produktpartikelgrößenverteilung entwickelte Modell basiert dabei auf der Swebrec-Funktion. Mit diesem lässt sich abhängig von der Spaltweite und der Aufgabepartikelgrößenverteilung die Produktpartikelgrößenverteilung bestimmen. Des Weiteren kann mit Hilfe des in dieser Arbeit aufgestellten Bilanzmodells der Grenzmassedurchsatz unter Kenntnis der Masse¬anteile für beliebige Mischungen von Einzelfraktionen prognostiziert werden. Dabei werden auch übergroße, nicht sofort einziehbare Partikel berücksichtigt, welche den Durchsatz signifikant senken können.
|
4 |
Contribution to the capacity determination of semi-mobile in-pit crushing and conveying systemsRitter, Robert 01 November 2016 (has links)
As ore grades decline, waste rock to ore ratios increase and mines become progressively deeper mining operations face challenges in more complex scenarios. Today´s predominant means of material transport in hard-rock surface mines are conventional mining trucks however despite rationalisation efforts material transportation cost increased significantly over the last decades and currently reach up to 60% of overall mining. Thus, considerations and efforts to reduce overall mining costs, promise highest success when focusing on the development of more economic material transport methods.
Semi-mobile in-pit crusher and conveyor (SMIPCC) systems represent a viable, safer and less fossil fuel dependent alternative however its viability is still highly argued as inadequate methods for the long term projection of system capacity leads to high uncertainty and consequently higher risk.
Therefore, the objective of this thesis is to develop a structured method for the determination of In-pit crusher and conveyor SMIPCC system that incorporates the random behaviour of system elements and their interaction. The method is based on a structured time usage model specific to SMIPCC system supported by a stochastic simulation.
The developed method is used in a case study based on a hypothetical mine environment to analyse the system behaviour with regards to time usage model component, system capacity, and cost as a function of truck quantity and stockpile capacity. Furthermore, a comparison between a conventional truck & shovel system and SMIPCC system is provided.
Results show that the capacity of a SMIPCC system reaches an optimum in terms of cost per tonne, which is 24% (22 cents per tonne) lower than a truck and shovel system. In addition, the developed method is found to be effective in providing a significantly higher level of information, which can be used in the mining industry to accurately project the economic viability of implementing a SMIPCC system.
|
5 |
Co-Simulation von LIGGGHTS® und SimulationX® zur Simulation des Zerkleinerungsprozesses in Brechern / Co-simulation of LIGGGHTS® and SimulationX® to simulate the grinding process in crushersFrenzel, Erik 22 July 2016 (has links) (PDF)
In vielen Bereichen der Tagebautechnik spielt die Zerkleinerung von Material/ -strömen eine wesentliche Rolle, wobei sich je nach Material verschiedene Anforderungen an das Brechersystem ergeben. In Folge dessen werden Brecher auftragsspezifisch, meist für einen speziellen Gesteinstyp oder Einsatzort entwickelt oder modifiziert. Eine aussagekräftige Prognose der im Bruchprozess auftretenden Lasten auf den Brecher ist somit essentieller Bestandteil im Entwicklungsprozess.
Ein viel versprechender Ansatz, um das Materialverhalten in der Lastprognose zu berücksichtigen, ist die numerische Simulation des Materialbruchverhaltens mit Hilfe der Diskreten-Elemente-Methode (DEM). Das Verhalten der sogenannten Partikel wird über Kontakt- und bond-Modelle beschrieben und soll das makroskopische Verhalten des jeweiligen Gesteins möglichst realitätsnah abbilden.
Die Problematik ist, dass in SimulationX® keine Module zur DEM-Simulation vorhanden sind und umgekehrt in der DEM-Simulationsumgebung LIGGGHTSG® (LAMMPS improved for general granular and granular heat transfer simulations) keine derartige Maschinensimulation möglich ist. Der Ausweg ist die Co-Simulation zweier unterschiedlicher Simulationsumgebungen durch die Nutzung des ,,Functional Mock-Up Interface“-Standards (FMI).
Berechnungsergebnis sind die dynamischen Lasten auf den Brecher unter Berücksichtigung des Materialverhaltens. Somit können früher in der Brecherentwicklung Prognosen zu auftretenden Lasten getroffen und Einflussuntersuchungen von Maschinenkonfigurationen zur Effizienzsteigerungen durchgeführt werden, was zuvor auf Grund des Einzelanfertigungscharakters nicht möglich oder nicht wirtschaftlich war.
|
6 |
Modellierung der Zerkleinerung in ProfilwalzenbrechernSchmidt, Marko 25 March 2011 (has links)
Für die Weich- und Mittelhartzerkleinerung von Primär- und Sekundärrohstoffen werden zunehmend Profilwalzenbrecher eingesetzt. Trotz relativ geringer Zerkleinerungsgrade zeichnen sie sich durch einen geringen spezifischen Leistungsbedarf, hohe Durchsätze, eine einfache Konstruktion und Instandhaltung sowie eine störungsfreie Betriebsweise aus und sind auch bei adhäsivem Aufgabematerial anwendbar. Trotz der Bedeutung dieser Maschinen gibt es bisher nur unzureichende Auslegungsmethoden. Die theoretisch begründete Modellierung der Zerkleinerung in markant profilierten Walzenbrechern ist deshalb Gegenstand dieser Arbeit, um dadurch die Dimensionierungsgrundlagen zu verbessern und Einsatzmöglichkeiten in der Hartzerkleinerung abzuschätzen. Dazu werden im Rahmen einer Systembetrachtung zunächst die wesentlichen Prozessparameter der Zerkleinerung ermittelt und die Bauarten von Profilwalzenbrechern klassifiziert (Kapitel 2). Die Darstellung der bekannten Berechnungsmodelle für die Hauptzielgrößen „Grenzdurchsatz“, „Produktgranulometrie“ und „Leistungsbedarf“ ist Gegenstand von Kapitel 3. Darauf aufbauend wird in Kapitel 4 ein neues, physikalisch begründetes Auslegungsmodell vorgestellt und das Untersuchungsfeld hinsichtlich der zu analysierenden Aufgabestoffart und Maschinengeometrie eingegrenzt. Die für dieses Modell erforderlichen Zerkleinerungstest- und Simulationsergebnisse werden in Kapitel 5 und 6 dargestellt, bevor die Arbeit in Kapitel 7 mit einer Zusammenfassung und einem Ausblick abschließt.:Symbolverzeichnis III
Tabellenverzeichnis XX
Abbildungsverzeichnis XXI
1 Einleitung und Problemstellung 1
2 Systemanalyse von Profilwalzenbrechern 3
2.1 Einfluss- und Zielgrößen von Profilwalzenbrechern 3
2.2 Systematisierung und Einordnung von Profilwalzenbrechern 7
2.2.1 Klassifizierung von Profilwalzenbrechern 8
2.2.1.1 Klassifizierung nach konstruktiven Maschinenparametern 9
2.2.1.2 Klassifizierung nach der Belastungsart 18
2.2.2 Abgrenzung von Profilwalzenbrechern 25
3 Erkenntnisstand zur Zerkleinerung in Profilwalzenbrechern 29
3.1 Wertebereiche der Einfluss- und Zielgrößen von Profilwalzenbrechern 29
3.2 Auslegungsmodelle von Profilwalzenbrechern 32
3.2.1 Ermittlung des Grenzdurchsatzes 32
3.2.1.1 Einzugsbedingung für das Einzelkorn 32
3.2.1.2 Theoretisch begründete Ansätze für den Grenzdurchsatz 38
3.2.1.3 Empirische Ansätze für den Grenzdurchsatz 47
3.2.2 Ermittlung der Produktkorngrößenverteilung 49
3.2.3 Ermittlung des Leistungsbedarfs 54
3.2.3.1 Theoretisch begründete Ansätze für den Leistungsbedarf 57
3.2.3.2 Empirische Ansätze für den Leistungsbedarf 68
3.3 Wertung des Erkenntnisstandes und Präzisierung der Aufgabenstellung 75
4 Neues Auslegungsmodell für Profilwalzenbrecher 77
4.1 Aufbau des Modells 77
4.2 Voruntersuchungen zu den Einflussgrößen des Modells 78
4.2.1 Analyse maschinenbezogener Parameter 78
4.2.1.1 Primäroptimierung der Profilwalzengeometrie 79
4.2.1.2 Sekundäroptimierung der Profilwalzengeometrie 86
4.2.2 Analyse aufgabestoffbezogener Parameter 95
4.2.3 Analyse systembezogener Parameter 99
4.3 Bestimmung der Zielgrößen des Modells 101
4.3.1 Simulation der Einzelkornzerkleinerung in einem Modellwalzenbrecher 101
4.3.2 Aggregation der Simulationsergebnisse auf die Massestromzerkleinerung 102
4.3.3 Skalierung der Simulationsergebnisse auf den Originalwalzenbrecher 110
5 Zerkleinerungsversuche für das neue Auslegungsmodell 115
5.1 Grundlagen zur Einzelkorndruckzerkleinerung 115
5.1.1 Physikalische Beschreibung von Deformations- und Bruchprozessen 115
5.1.2 Empirische Analyse von Deformations- und Bruchprozessen 121
5.1.2.1 Einfluss- und Zielgrößen der Einzelkorndruckzerkleinerung 121
5.1.2.2 Korngrößeneffekt der Einzelkorndruckzerkleinerung 124
5.1.2.2.1 Versuchsergebnisse zum Korngrößeneffekt 124
5.1.2.2.2 Mathematisch-statistische Ansätze zum Korngrößeneffekt 128
5.2 Experimentelle Untersuchungen zur Einzelkorndruckzerkleinerung 132
5.2.1 Aufbau der Versuchsapparaturen 132
5.2.2 Durchführung der Versuche 134
5.2.3 Auswertung der Versuche 136
6 DEM-Simulationen für das neue Auslegungsmodell 141
6.1 Grundlagen zur DEM-Simulation 141
6.1.1 Beschreibung der DEM 141
6.1.2 Bisherige DEM-Simulationen von Zerkleinerungsprozessen 151
6.2 Kalibrierung des DEM-Gesteinsmodells 154
6.2.1 Statistische Simulationsplanung 156
6.2.2 Simulationsdurchführung 159
6.2.3 Voroptimierung 161
6.2.4 Nachoptimierung 164
6.3 Walzenbrechersimulationen mit dem kalibrierten DEM-Gesteinsmodell 166
6.3.1 Aufbau des Walzenbrechersimulationsprogramms 166
6.3.2 Ergebnisse der Walzenbrechersimulationen 169
6.3.2.1 Simulationsergebnisse zum Massedurchsatz des Walzenbrechers 169
6.3.2.2 Simulationsergebnisse zur Produktkorngrößenverteilung des Walzenbrechers 171
6.3.2.3 Simulationsergebnisse zum Leistungsbedarf des Walzenbrechers 174
7 Zusammenfassung und Ausblick 178
Literaturverzeichnis XXIV
Anlagenverzeichnis XXXV
|
7 |
Co-Simulation von LIGGGHTS® und SimulationX® zur Simulation des Zerkleinerungsprozesses in BrechernFrenzel, Erik 22 July 2016 (has links)
In vielen Bereichen der Tagebautechnik spielt die Zerkleinerung von Material/ -strömen eine wesentliche Rolle, wobei sich je nach Material verschiedene Anforderungen an das Brechersystem ergeben. In Folge dessen werden Brecher auftragsspezifisch, meist für einen speziellen Gesteinstyp oder Einsatzort entwickelt oder modifiziert. Eine aussagekräftige Prognose der im Bruchprozess auftretenden Lasten auf den Brecher ist somit essentieller Bestandteil im Entwicklungsprozess.
Ein viel versprechender Ansatz, um das Materialverhalten in der Lastprognose zu berücksichtigen, ist die numerische Simulation des Materialbruchverhaltens mit Hilfe der Diskreten-Elemente-Methode (DEM). Das Verhalten der sogenannten Partikel wird über Kontakt- und bond-Modelle beschrieben und soll das makroskopische Verhalten des jeweiligen Gesteins möglichst realitätsnah abbilden.
Die Problematik ist, dass in SimulationX® keine Module zur DEM-Simulation vorhanden sind und umgekehrt in der DEM-Simulationsumgebung LIGGGHTSG® (LAMMPS improved for general granular and granular heat transfer simulations) keine derartige Maschinensimulation möglich ist. Der Ausweg ist die Co-Simulation zweier unterschiedlicher Simulationsumgebungen durch die Nutzung des ,,Functional Mock-Up Interface“-Standards (FMI).
Berechnungsergebnis sind die dynamischen Lasten auf den Brecher unter Berücksichtigung des Materialverhaltens. Somit können früher in der Brecherentwicklung Prognosen zu auftretenden Lasten getroffen und Einflussuntersuchungen von Maschinenkonfigurationen zur Effizienzsteigerungen durchgeführt werden, was zuvor auf Grund des Einzelanfertigungscharakters nicht möglich oder nicht wirtschaftlich war.
|
Page generated in 0.1399 seconds