• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantum Transport Simulations of Nanoscale Materials

Obodo, Tobechukwu Joshua 07 January 2016 (has links)
Nanoscale materials have many potential advantages because of their quantum confinement, cost and producibility by low-temperature chemical methods. Advancement of theoretical methods as well as the availability of modern high-performance supercomputers allow us to control and exploit their microscopic properties at the atomic scale, hence making it possible to design novel nanoscale molecular devices with interesting features (e.g switches, rectifiers, negative differential conductance, and high magnetoresistance). In this thesis, state-of-the-art theoretical calculations have been performed for the quantum transport properties of nano-structured materials within the framework of Density Functional Theory (DFT) and the Nonequilibrium Green's Function (NEGF) formalism. The switching behavior of a dithiolated phenylene-vinylene oligomer sandwiched between Au(111) electrodes is investigated. The molecule presents a configurational bistability, which can be exploited in constructing molecular memories, switches, and sensors. We find that protonation of the terminating thiol groups is at the origin of the change in conductance. H bonding at the thiol group weakens the S-Au bond, and thus lowers the conductance. Our results allow us to re-interpret the experimental data originally attributing the conductance reduction to H dissociation. Also examined is current-induced migration of atoms in nanoscale devices that plays an important role for device operation and breakdown. We studied the migration of adatoms and defects in graphene and carbon nanotubes under finite bias. We demonstrate that current-induced forces within DFT are non-conservative, which so far has only been shown for model systems, and can lower migration barrier heights. Further, we investigated the quantum transport behavior of an experimentally observed diblock molecule by varying the amounts of phenyl (donor) and pyrimidinyl (acceptor) rings under finite bias. We show that a tandem configuration of two dipyrimidinyl-diphenyl molecules improves the rectification ratio, and tuning the asymmetry of the tandem set-up by rearranging the molecular blocks greatly enhances it. It has been recently demonstrated that the large band gap of boronitrene can be significantly reduced by carbon functionalization. We show that specific defect configurations can result in metallicity, raising interest in the material for electronic applications. In particular, we demonstrate negative differential conductance with high peak-to-valley ratios, depending on the details of the material, and identify the finite bias effects that are responsible for this behavior. Also, we studied the spin polarized transport through Mn-decorated topological line defects in graphene. Strong preferential bonding is found, which overcomes the high mobility of transition metal atoms on graphene and results in stable structures. Despite a large distance between the magnetic centers, we find a high magnetoresistance and attribute this unexpected property to very strong induced π magnetism. Finally, the results obtained herein advance the field of quantum electronic transport and provide significant insight on switches, rectification, negative differential conductance, magnetoresistance, and current-induced forces of novel nanoscale materials.
2

Electronic structure and transport in low dimensional systems

Liebing, Simon 27 August 2019 (has links)
The work discusses the development of molecular electronics based on the possibility of the usage of anorganic quantum dots and organic molecules as basis material. Of special interest are the properties of semiconductor quantum dots and their modification due to the coupling of quantum dots from different materials. Eventually these are proper candidates to avoid the fast recombination of excitons which is a problem in many organic photovoltaic materials, by local separation of charge carriers. Another materials class investigated are the so called charge transfer dimers. On the way to usable molecular building blocks switching and rectification behavior are important properties, therefore they were of special interest in the investigation. Especially the usage of charge transfer materials in rectification was already suggested in the 70’s, but could be realized till now only with a quiet limited success. Already around the millennium it was shown that a too strong coupling between the components leads to a resymmetrization of the I-V-characteristics. For all systems the electronic structure was investigated by means of density functional theory. Additional the charge transport in between gold leads was computed based on non equilibrium Greens functions. For the system of coupled quantum dots it is shown how the combination of several gates can be used to adjust the transport properties. This work shows that the rectification effect within weakly coupled charge transfer systems stays also small because also in this case a resymmetrization of the I-V-characteristics takes place.:1 Introduction 2 Molecular Electronics 3 Theoretical background 4 Computational details and software packages 5 Modeling 6 Results and Discussion 6.1 Quantum dots 6.2 Transport through coupled quantum dots 6.3 Charge transfer dimers 6.4 Transport through charge transfer dimers 7 Conclusion 8 Outlook Acknowledgement List of Figures List of Tables Bibliography List of own Publications / Die Arbeit befasst sich mit der Entwicklung der molekularen Elektronik und insbesondere mit der Prüfung der Verwendbarkeit von anorganischen Quantenpunkten und organischen Molekülen für diesen Bereich. Quantenpunkte aus Halbleitermaterialien besitzen eine grosse Bandbreite von Eigenschaften. Es wird untersucht, wie die Eigenschaften durch die Kopplung von Quantenpunkten unterschiedlicher Materialien modifiziert werden können. Eine Idee besteht in der lokalen Trennung von Ladungsträgern um die schnelle Rekombination von Exzitonen zu vermeiden, welche in organischen Solarzellen häufig ein Problem darstellt. Als weitere Materialklasse werden molekulare Ladungstransferdimere untersucht. Auf dem Weg zu nutzbaren Bauelementen sind das Schalt- und Gleichrichtverhalten wichtige Eigenschaften, daher sind sie von besonderem Interesse. Insbesondere die Frage des Ladungstransfers in Bezug auf das Gleichrichten wurde schon in den 1970ern vorgeschlagen, konnte aber bisher immer nur mit begrenztem Erfolg realisiert werden. Schon um die Jahrtausendwende wurde gezeigt, dass Systeme mit einer zu starken Kopplung zu einer Symmetrisierung der Strom-Spannungs-Kennlinie führen. Bei beiden Systemen wird jeweils die elektronische Struktur im Sinne der Dichtefunktionaltheorie berechnet. Zusätzlich wird jeweils der Ladungstransport zwischen Goldkontakten mittels Nichtgleichgewichts-Greenschen Funktionen berechnet. Für die Systeme gekoppelter Quantenpunkte wird gezeigt, wie die Transporteigenschaften mittels Gatespannungen eingestellt werden können. In der vorliegenden Arbeit wird gezeigt, dass es auch im Fall schwach gekoppelter Ladungstransferdimere zu weitgehend symmetrischen Strom-Spannungs-Kennlinien kommt und es auch für diese Systeme nur zu einem schwachen Gleichrichtverhalten kommt.:1 Introduction 2 Molecular Electronics 3 Theoretical background 4 Computational details and software packages 5 Modeling 6 Results and Discussion 6.1 Quantum dots 6.2 Transport through coupled quantum dots 6.3 Charge transfer dimers 6.4 Transport through charge transfer dimers 7 Conclusion 8 Outlook Acknowledgement List of Figures List of Tables Bibliography List of own Publications

Page generated in 0.0291 seconds