1 |
Applications of Computational Thermodynamics and Kinetics on Transformations in Stainless SteelsWessman, Sten January 2013 (has links)
Stainless steels are high-alloyed, usually with multiple components and often also dual matrix phases, as for duplex stainless steels. This make predictions and calculations of alloying effects on equilibria and transformations complicated. Computational thermodynamics has emerged as an indispensable tool for calculations within these complex systems with predictions of equilibria and precipitation of phases. This thesis offers examples illustrating how computational methods can be applied both to thermodynamics, kinetics and coarsening of stainless steels in order to predict microstructure and, to some extent, also properties. The performance of a current state-of-the-art commercial thermodynamic database was also explored and strengths and weaknesses highlighted. / <p>QC 20130429</p>
|
2 |
Solidification Modeling of MicrosegregationHammadi, Souzan January 2018 (has links)
A phase transformation from liquid to solid phase takes place when the material solidifies. Limited diffusion during this phase transition causes microsegregation, which is aphenomenon during solidification that leads to the formation of secondary phases andconcentration gradients. This affects the properties of the material and how it is to be treatedin further processing steps. Due to the complexity of the solidification process, a modelingapproach has been used for investigation of microsegregation. The Scheil-Gulliver model assumes negligible diffusion in the solid phase but an exchange ofsolute during back-diffusion can have an important influence on solidification. While the Brody-Flemings model considers this, it is questionable in its assumptions. A new proposedmodel by John Ågren that considers multicomponent diffusion effects have been implementedusing the Matlab-Toolbox for Thermo-Calc. The model is used to perform solidification simulations for the binary Al-2.1Cu and theternary Al-2.1Cu-1Si system (at%) and the results are compared to the Scheil-Gulliver modeland DICTRA simulations. The Ågren model gives excellent results for the binary system athigh cooling rates. It does however show deviations from the DICTRA results at lowercooling rates and for the ternary system. / När ett material stelnar sker en fasomvandling från flytande till fast fas. Begränsad diffusionunder denna fasövergång orsakar mikrosegring, vilket är ett fenomen under stelningsförloppetsom skapar sekundära faser och koncentrationsgradienter. Detta påverkar egenskaperna hosmaterialet and hur den ska behandlas under senare processteg. På grund av komplexiteten avstelningsprocessen har modellering använts för att undersöka mikrosegring. Scheil-Gulliver modellen antar att det inte sker någon diffusion i fast fas men ett utbyte avinlösta ämnen kan ha ett viktigt inflytande på stelningsförloppet. Fastän Brody-Flemingsmodellen tar hänsyn till detta så är den tveksam i sina antaganden. En ny föreslagen modell avJohn Ågren betraktar diffusionseffekter för ett multikomponent system och denna harimplementerats med hjälp av Matlab-Toolbox för Thermo-Calc. Modellen har använts för att simulera stelning för ett binärt Al-2.1Cu och ett ternärt Al-2.1-1Si system (at%) och resultaten har jämförts med Scheil-Gulliver modellen och DICTRAsimuleringar. Ågren modellen ger utmärkta resultat för det binära systemet vid högakylhastigheter. Modellen visar däremot avvikelser från DICTRA vid låga kylhastigheter samtför det ternära systemet.
|
3 |
Advances in Sintering of Powder Metallurgy SteelsKariyawasam, Nilushi Christine January 2017 (has links)
In comparison to traditionally fabricated steels that can undergo extensive processing to produce a complex-shaped component, the powder metallurgy (PM) technique can provide a more efficient approach as it is capable of producing intricately-shaped components that require little to no additional processing and machining [1], [2]. A key factor in being able to do so pertains to quenching and utilizing an appropriate quenching agent that can provide dimensional stability to the part being quenched [3], [4]. To ensure that a PM component can perform equally well when being quenched by a quenchant of reduced cooling capability, the PM component should be if not more, then just as hardenable. Steel hardenability can inevitably be improved with the increase of overall alloying content [5], however, if overall alloying content is to be kept at a minimum, the concept of lean PM steel design is one worth investigating; where a lean steel entails that each and every alloying addition is utilized to its maximum potential.
This study evaluates the homogenization behaviour of alloying elements in PM steels during sintering as well as the efficiency of wide-spread industrial practices involving the use of various master alloys and ferroalloys, and investigates the realm of liquid phase sintering to understand and optimize the homogenization behaviour of alloying elements and mechanical properties of PM steels. In the context of this work, multi-component master alloys contain at least three of non-ferrous metals as alloying elements and ferroalloys are master alloys containing iron in addition to typically a maximum of two other non-ferrous alloying additions. Part one of this study discusses a combination of thermodynamic software (DICTRA and Thermo-Calc), incremental sintering experiments and scanning electron microscopy (SEM) - wavelength dispersive spectroscopy (WDS) that were used in order to form a deeper understanding of the homogenization behaviour of alloying elements within PM steel during sintering. Electron microscopy analyses on partially and industrially sintered components provide elemental maps to track the evolution of alloying elements as they relax to homogeneity. Electron microscopy analyses for this portion of the study were conducted on an industryproduced automotive component that was sectioned and sintered industrially as well as experimentally at 1280°C for 30 minutes and 13.4 hours.
DICTRA simulations carried out for this research provide a 1-D insight into the evolution of concentration profiles and phases throughout various sintering times for systems involving Cr, Mn, C and Fe. DICTRA simulation results of alloying sources were studied alongside alloying element profiles obtained by compiling point quantification from wavelength dispersive spectroscopy maps for the sintered automotive component. Computational results provided conservative, semi-quantitative recommendations on optimal alloy addition forms that lead to an improvement in homogenization. Part two of this study involves the approach of fabricating and testing multi-component master alloy additions. As these materials are widely employed in PM and are typically fabricated by solidification, their states are non-equilibrium and therefore have regions containing phases precipitating in the beginning of freezing which have higher melting temperatures than regions with phases forming later on. During heating, it is hypothesized that Scheil’s solidification path backtracks and as a result, a fraction of liquid in the ferroalloy can be estimated at sintering temperature. If the fraction is significant, the utilization of this ferroalloy implies liquid phase sintering. Through a combination of Thermo-Calc and Fortran softwares, multi-component ferroalloys with promising compositions were discovered in Fe-C-Cr-Mn, Fe-C-Cr-Mn-Ni, FeC-Mn-Mo, Fe-C-Mn-Mo-Ni and Fe-C-Cr-Mn-Mo-Ni systems for low temperature liquid phase sintering. Those of the Fe-C-Cr-Mn-Mo, Fe-C-Cr-Mn-Mo-Ni and Fe-Mn-Mo-Ni system were fabricated and tried in practice. Compositional maps and mechanical properties of PM steels made with variations of this specially tailored multi-component master alloys were compared with those for which traditional alloy additions were used. / Thesis / Master of Applied Science (MASc)
|
4 |
Modelování fázového složení žárupevných ocelí a jejich spojů / Modelling of Phase Composition of Heat Resistant Steels and their WeldsDvořáček, Ondřej Unknown Date (has links)
This work deals with the effects of high temperature exposition of low alloyed creep resistant steels on their structural stability and structural stability of their weld joint. The theoretical part of this work gives an overview of creep resistant steels considering their chemical and phase composition and their connection to high temperature mechanical properties. The CALPHAD method is presented as generally accepted approach for equilibrated calculations and Thermo-Calc and DICTRA software packages are introduced as CALPHAD applications. Thermo-Calc software is used for calculation of phase composition of the examined materials and for calculation of the phase diagrams. Software DICTRA is used for simulations of diffusion controlled phase reactions in the analysed weld. Experimentally one weld joint of the steels 15 128 and 15 313 has been studied after four different annealing procedures. The experimental results include chemical profiles across the welds, microhardness profiles and metallographic analysis of significant regions of the welds. These experimental results are compared with the simulation results. The comparison shows a reasonable agreement between experimental and simulation data.
|
5 |
Evaluation and Prediction of Hydrogen Assisted Cracking of Dissimilar Metal WeldsRule, James R. January 2019 (has links)
No description available.
|
6 |
Exploratory study of the interactions between textured alumina coatings and steelSvantesson, Jonas January 2018 (has links)
The crater wear of alumina coated WC-Co cutting tools is thought to be influenced by the chemical reactions between the coating and the workpiece material. Three different crystal orientations ((001), (012), and (100) of alpha alumina CVD coatings are examined in combination with four workpiece materials of steel to establish what reactions are present, and the extent of diffusion. The alumina coatings and workpiece materials were pressed together as diffusion couples and heat treated at 1250- 1300°C for 10-20hours. It was fond that the types of inclusions present in the workpiece were more impactful on the chemical wear of the coating than the crystal orientation of the coating. EDS measurements show significant amounts of W and Co on the surface of the coatings and on the steel surfaces after heat treatment. This is thought to be connected to the migration of Co through the coating in cooling cracks and other impurities. In the surface of the coating, areas of solidified Co-rich structure have been found, implying that Co has formed an alloy with Fe, C, Al, and W with sufficiently low melting temperature to partially melt during the heat treatment. This has been confirmed as possible by simulations in Thermo-calc. Turning tests and scratch tests were made with the same combinations of coatings and workpiece material and show differences in adhesion of workpiece material on the different coating orientations. The 100-orientation has been found to have the most adhered workpiece material, the reason for this being its higher surface roughness. Ultimately no noticeable differences in chemical reactivity between the coating crystal orientations was found. The Co diffusion though the coating occurred for all the coating orientations and further experiments in turning with the different workpiece materials are required to determine the effect of Ca-rich inclusions on the magnitude of chemical wear. / <p>Handledare på företag:</p><p>Susanne Norgren </p><p>Doc. Ph.D, Group Expert Materials Design</p>
|
7 |
Brasage isotherme sous vide d’alliages d’aluminium pour la réalisation d’échangeurs thermiques / Isothermal brazing of aluminum alloys under vacuum for heat exchangers manufactureBernardi, Cécile 11 December 2014 (has links)
Cette étude présente le brasage isotherme sous vide des alliages d’aluminium appliqué à la fabrication d’échangeurs thermiques. Ainsi, on étudie les évolutions microstructurales des nuances 3003 (Al-Mn) et 4004 (Al-Si-Mg) au cours des différentes étapes du cycle de brasage. Une double approche est mise en œuvre. Dans un premier temps, des échantillons modèles sont traités thermiquement en laboratoire. On suit l’évolution des phases en présence dans les deux alliages et les phénomènes de diffusion à l’état solide grâce à des analyses EDS. Nous montrons que les outils de simulation thermodynamique Thermo-Calc et DICTRA sont fiables à des températures supérieures à 400°C. On propose ensuite une description des mécanismes gouvernant la fusion du métal d’apport. Nous montrons qu’elle aboutit à la ségrégation d’un liquide enrichi en Si à la surface du métal d’apport. Dans un deuxième temps, des essais sont réalisés en industrie afin de prendre en compte les paramètres du brasage réel. Nous mettons en évidence des phénomènes de dissolution excessive et de pénétration de liquide aux joints de grains. Nous identifions les mécanismes qui gouvernent l’apparition de ces problèmes métallurgiques au cours du brasage. Ainsi, une faible taille de grains du métal de base et une diffusion préférentielle aux joints de grain sont mises en cause / This study deals with the vacuum TLP (Transient Liquid Phase) brazing of aluminum alloys applied to the manufacture of heat exchangers. Thus, the microstructure evolutions of 3003 (Al-Mn) and 4004 (Al-Si-Mg) alloys during the whole assembly process are studied. Firsty, model samples are heat treated in laboratory. The phase transformations and the solid state diffusion between the filler alloy and the base alloy are studied. The results are compared to thermodynamic predictions obtained with both Thermo-Calc and DICTRA softwares. We conclude that these tools are reliable at temperatures above 400°C. The fusion path of the filler alloy is described. It is shown that a Si enriched liquid is formed at the clad surface. On a second time, tests are carried out in industrial conditions, in order to take actual brazing parameters into account. Excessive dissolution and liquid penetration at grain boundaries are observed. The fine grained structure of the base alloy associated to a preferential diffusion at grain boundaries appear to be the main causes
|
8 |
Multicomponent diffusional reactions in tool steels : Experiment and TheoryLindwall, Greta January 2012 (has links)
Many phenomena determining the microstructure of a tool steel and consequently the properties of the material, are governed by multicomponent diffusion. The diffusion driven reactions that take place during, for example, tempering of a hot-work tool steel or when the microstructure develops during hot isostatic pressing of cold-work tool steel, are dependent on the types and amounts of alloying elements. In order for computational methods to be usable, these alloying effects need to be understood and incorporated in the models. In this work the influence of some typical tool steel alloying elements on the coarsening behavior of precipitates is investigated. Experimental coarsening studies are performed and the impact of the diffusion mobility descriptions and the thermodynamic descriptions are investigated by means of DICTRA coarsening calculations. The kinetic descriptions for diffusion in the body centered-cubic phase in the case of the chromium-iron-vanadium system and the chromium-iron-molybdenum system are improved by assessments of diffusion mobility parameters, and are shown to have a large impact on the calculated coarsening rate for vanadium-rich and molybdenum-rich precipitates. The effect of cobalt is examined by a coarsening experiment for vanandiumrich carbides and by a diffusion couple experiment for the investigation of the vanadium interdiffusion. The presence of cobalt is experimentally shown to have retarding effect on the coarsening rate of the carbides, but not on the vanadium diffusion. The coarsening rate of nitrogen-rich precipitates is compared to the coarsening rate of carbon-rich precipitates, and a lower coarsening rate for nitrides compared to carbides can be confirmed. Correlation between coarsening calculations and experiments is obtained suggesting that the thermodynamic description of the two systems is the underlaying reason for the different coarsening rates. Further, calculations utilizing the DICTRA software are combined with experimental investigations in order to study the possibility to apply computational methods for compound material development and explore application areas for high nitrogen alloyed tool steels produced by powder metallurgy. / <p>QC 20121011</p>
|
9 |
Aspects of microstructural evolution in chromium steels in high temperature applicationsGustafson, Åsa January 2000 (has links)
In this thesis 9-12 % Cr steels, used for high-temperaturecomponents in fossil-fired power plants are considered. Thecreep strength of thees steels depend on their microstructurethat consists of a matrix of tempered lath martensite withdensely distributed precipitates. The mechanical properties arestrongly influenced by precipitates present in the matrix andthe more densely distributed they are the higher is thehardening effect. These particles nucleate, grow and coarsenduring use in power plants, leading to a degradation ofmechanical properties. In this thesis the nucleation andcoarsening behaviour of the precipitates in the Cr steels aresimulated by new models and the results are compared withtransmission electron microscopy (TEM) observations of testedmaterials. A model of the nucleation of MX, which mainly isvanadium-nitrides, is presented. MX precipitates are assumed tonucleate on dislocations during annealing. The model takes intoaccount the full multicomponent thermodynamical behaviour ofthe system as well as the strain energy caused by a puredilatoric strain and the shape of the nucleus. The calculationsyield a critical size and shape represented by an oblatespheroid with a radius of a few nanometers and a thickness ofan atomic layer. This is in agreement with TEM observations ofsupercritical particles. A new coarsening model, which takes into account themulticomponent effects, is presented and it has been tested ondifferent systems to validate the model. Four different carbides, Cr7C3, Mo6C, VC and NbC, in austenitic matrix as well asγ ' in ternary Ni-base super-alloy systems (Ni-Al-Mo)were compared with measurements from literature. TiC-particles in austenitic stainless steel, ASTM 316Ti,were considered. The simulations were performed taking intoaccount iron and 7 alloying elements. The measurements wereperformed with TEM on samples that had been heat-treated at900° C. MX and M23C6in a 9 % Cr steel were investigated with energyfiltering transmission electron microscopy (EFTEM) andcompared with simulations. The used samples had been heattreated for various periods of time at 600 and 650° Cfor up to 26 000 h. The agreement of the simulations with the experiments wasgood in all cases when reasonable values of the interfacialenergy, the only adjustable parameter, were chosen. Coarsening simulations were also performed to investigatethe influence of changes in composition on the coarsening rate.For MX, in a 9 % Cr steel, the coarsening rate is almostindependent of the V/Nb ratio but highly dependent on theN-content. Also the effect on the coarsening rate for M23C6by adding Co to a Cr steel was investigated bysimulation. Co is known to increase the resistance totempering. The results show that a final average radius of thecarbides after 30 000 h at 600° C decreases with 30 % witha Co addition of 10 mass %. <b>Keywords:</b>Cr steels, nucleation, coarsening, model,DICTRA, precipitates, carbides, carbo-nitrides, MX, VN, M23C6, TiC, TEM, EFTEM, Curie-temperature
|
10 |
Aspects of microstructural evolution in chromium steels in high temperature applicationsGustafson, Åsa January 2000 (has links)
<p>In this thesis 9-12 % Cr steels, used for high-temperaturecomponents in fossil-fired power plants are considered. Thecreep strength of thees steels depend on their microstructurethat consists of a matrix of tempered lath martensite withdensely distributed precipitates. The mechanical properties arestrongly influenced by precipitates present in the matrix andthe more densely distributed they are the higher is thehardening effect. These particles nucleate, grow and coarsenduring use in power plants, leading to a degradation ofmechanical properties. In this thesis the nucleation andcoarsening behaviour of the precipitates in the Cr steels aresimulated by new models and the results are compared withtransmission electron microscopy (TEM) observations of testedmaterials.</p><p>A model of the nucleation of MX, which mainly isvanadium-nitrides, is presented. MX precipitates are assumed tonucleate on dislocations during annealing. The model takes intoaccount the full multicomponent thermodynamical behaviour ofthe system as well as the strain energy caused by a puredilatoric strain and the shape of the nucleus. The calculationsyield a critical size and shape represented by an oblatespheroid with a radius of a few nanometers and a thickness ofan atomic layer. This is in agreement with TEM observations ofsupercritical particles.</p><p>A new coarsening model, which takes into account themulticomponent effects, is presented and it has been tested ondifferent systems to validate the model.</p><p> Four different carbides, Cr<sub>7</sub>C<sub>3</sub>, Mo<sub>6</sub>C, VC and NbC, in austenitic matrix as well asγ ' in ternary Ni-base super-alloy systems (Ni-Al-Mo)were compared with measurements from literature.</p><p> TiC-particles in austenitic stainless steel, ASTM 316Ti,were considered. The simulations were performed taking intoaccount iron and 7 alloying elements. The measurements wereperformed with TEM on samples that had been heat-treated at900° C.</p><p> MX and M<sub>23</sub>C<sub>6</sub>in a 9 % Cr steel were investigated with energyfiltering transmission electron microscopy (EFTEM) andcompared with simulations. The used samples had been heattreated for various periods of time at 600 and 650° Cfor up to 26 000 h.</p><p>The agreement of the simulations with the experiments wasgood in all cases when reasonable values of the interfacialenergy, the only adjustable parameter, were chosen.</p><p>Coarsening simulations were also performed to investigatethe influence of changes in composition on the coarsening rate.For MX, in a 9 % Cr steel, the coarsening rate is almostindependent of the V/Nb ratio but highly dependent on theN-content. Also the effect on the coarsening rate for M<sub>23</sub>C<sub>6</sub>by adding Co to a Cr steel was investigated bysimulation. Co is known to increase the resistance totempering. The results show that a final average radius of thecarbides after 30 000 h at 600° C decreases with 30 % witha Co addition of 10 mass %.</p><p><b>Keywords:</b>Cr steels, nucleation, coarsening, model,DICTRA, precipitates, carbides, carbo-nitrides, MX, VN, M<sub>23</sub>C<sub>6</sub>, TiC, TEM, EFTEM, Curie-temperature</p>
|
Page generated in 0.0243 seconds