• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 94
  • 33
  • 14
  • 13
  • 12
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 212
  • 212
  • 24
  • 24
  • 21
  • 15
  • 14
  • 14
  • 13
  • 13
  • 12
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

ATP, trehalose, glucose, and ammonium ion levels in the two cell types of Dictyostelium discoideum

Wilson, Jeanne Burrowbridge 12 June 2010 (has links)
Ultra-microfluorometric techniques were adapted to follow several compounds related to energy metabolism through the developmental cycle of Dictyostelium discoideum. Each compound (ATP, trehalose, glucose, and ammonium ion) was found to be present in stalk and/or spore cells. The accumulation of NH₄⁺ was interpreted as an indication of protein degradation, a source of energy in this organism. During the early stages of differentiation NH₄⁺ was localized only in stalk cells. However, it accumulated in spore cells during culmination such that levels were comparable in the two cell types by the end of development. Trehalose, an energy source for germinating spores, was found in both cell types but was preferentially degraded in stalk cells late in development. Glucose, the degradation product of trehalose, was localized in stalk cells and varied inversely with trehalose in prestalk cells. ATP was not localized in a specific cell type during development. However, ATP declined in stalk cells at an earlier stage of development. These findings emphasize the need for knowledge of cell-specific events involved in the differentiation of this and other organisms. / Master of Science
142

An Effective Communication Framework For Inter-Agent Communication In a Complex Adaptive System With Application To Biology

Singhal, Ankit 20 December 2006 (has links)
Multi-Agent Systems (MASs) and Partial and Ordinary Differential Equations (PDEs and ODEs respectively) have often been employed by researchers to effectively model and simulate Complex Adaptive Systems (CASs). PDEs and ODEs are reduction based approaches which view the system globally and ignore any local interactions and processes. MASs are considered by many to be a better tool to model CASs, but have issues as well. Case in point, there is concern that present day MASs fail to capture the true essence of inter-cellular communication in a CAS. In this work we present a realistic and utilizable communication framework for inter-agent communication for a CAS simulation. We model the dynamic properties of the communication signals and show that our model is a realistic model for inter-cellular communication. We validate our system by modeling and simulating pattern formation in Dictyostelium discoideum, a unicellular organism. / Master of Science
143

Characterization and localization of adenylate cyclase during development of Dictyostelium discoideum

Merkle, Roberta Gayle Kurpit January 1982 (has links)
Cyclic AMP functions as the chemotactic signal during aggregation of single-celled amoebae of the cellular slime mold Dictyostelium discoideum. Evidence suggests that cyclic AMP also acts as a regulatory molecule during Dictyostelium multicellular differentiation. Biochemical characterization of adenylate cyclase, the cyclic AMP synthetic enzyme, was accomplished using a sensitive radioimmunoassay. The enzyme was found to be pellet-bound. The non-ionic detergents, Triton X-100 and Lubrol PX, were not effective for solubilizing this activity. Magnesium or manganese could serve as the required divalent cation, with the Mn-supported activity over 4-fold greater than the Mg-supported activity. Typical mammalian adenylate cyclase modulators such as guanyl nucleotides, fluoride, and cholera toxin did not activate the Dictyostelium enzyme. Calcium, in conjunction with its protein receptor calmodulin, did not appear to regulate the enzyme. An endogenous extracellular, heat-stable substance was found to inhibit Dictyostelium adenylate cyclase. By use of ultramicrotechniques adenylate cyclase activity was localized in the pre-spore cells of the culminating individual with no activity detected in the pre-stalk region. Lack of detectable activity in the pre-stalk cells may be due to a masking by the endogenous inhibitor. An increasing gradient of activity was found in the pre-spore mass with activity increasing from the uppermost area to the base. No striking localization was seen prior to the pre-culmination stage of development. Two peaks in cyclic AMP levels, as measured in individuals were found during development. One coincided with aggregation, the other occurred at the culmination stage. A gradient of cyclic AMP within the culminating individual paralleled the gradient of adenylate cyclase activity. The tip of the individual had greater levels of cyclic AMP than the middle pre-spore region, and the upper stalks had higher levels than the lower stalks. These data indicate an enzymatic potential for establishing a gradient of cyclic AMP. At the culmination stage of development this molecule could act to direct the chemotactic movements of the pre-stalk cells as well as provide positional information for the terminal differentiation of the pre-spore cells into mature spores. / Ph. D.
144

The relationship between the two forms of glycogen phosphorylase in Dictyostelium discoideum

Naranan, Venil January 1987 (has links)
The slime mold Dictyostelium discoideum has two developmentally regulated forms of the enzyme glycogen phosphorylase. The inactive ’b’ form requires 5'AMP for activity and is present in early development, whereas the active ’a’ form is 5'AMP independent and is present in late development. Polyclonal antibodies raised to purified forms of the enzyme show low cross-reactivity. The anti-’a’ is specific for a 104 kd protein associated with phosphorylase ‘a’ activity; the anti-’b’ is specific for a 92 kd protein associated with the ’b’ activity. The two antibodies inhibit the activities of their corresponding antigens, furthermore, each antibody recognizes the proteolytic products of its corresponding antigen. In the presence of exogenously added Mn²⁺ and ATP, the ‘b’ form shows apparent conversion to a 5'AMP independent form as detected spectrophotometrically. This apparent conversion is accompanied by in vitro phosphorylation of the ’b’ enzyme by a Mn²⁺ dependent protein kinase. The ’b’ kinase also phosphorylates casein in the presence of Mg²⁺ or Mn²⁺. In vivo phosphorylation of the ’b’ form was observed in early development. Phosphorylation of the ’b’ form did not result in the appearance of the 104 kd protein. At this point, it is unclear whether Dictyostelium phosphorylase ’a’ represents a phosphorylated and activated form of the ’b’ form, or whether it represents a separate gene product. / Ph. D.
145

Caracterização molecular da proteína DdI-2 e mapeamento de seus domínios de interação com a proteína fosfatase do tipo-1 de Dictyostelium discoideum / Molecular characterization of DdI-2 protein and domain mapping of Dictyostelium discoideum protein phosphatase type-1

Canavez, Juliana Moreira de Sousa 04 February 2005 (has links)
A serina/treonina fosfatase do tipo 1 (PP1) é uma enzima ubíqua nas células e nos tecidos das várias espécies em que foi pesquisada e regula vários processos como metabolismo intermediário, processamento de mRNA, transcrição e apoptose. Geralmente a holoenzima PP1 é encontrada como um dímero constituído por uma subunidade catalítica conservada (PP1c) e uma ou mais subunidades reguladoras variáveis. Em mamíferos, já foram identificados mais de 50 polipeptídeos que se associam direta ou indiretamente a PP1c, gerando holoenzimas com localizações celulares e especificidades distintas. Entre estas proteínas estão inibidores citosólicos de PP1c, tais como o inibidor-1 (I-1), o inibidor-2 (I-2) e o inibidor nuclear da PP1 (NIPP-1). Ortólogos do I-2 foram descritos em microorganismos como Saccharomyces cerevisiae e Neurospora crassa. Neste trabalho nós demonstramos que o genoma da ameba social Dictyostelium discoideum possui uma única cópia do gene que codifica um ortólogo do I-2 (DdI-2). Análise através de Northern blot mostrou que o mRNA de DdI-2 é expresso durante o crescimento e ao longo de todo o ciclo de desenvolvimento, com níveis variáveis. Também demonstramos que o gene DdI-2 codifica uma verdadeira proteína inibidora da PP1c uma vez que seu produto recombinante em bactéria é capaz de inibir, com eficácia equivalente, as atividades de fosforilase fosfatase das PP1c recombinantes selvagem (DdPP1c) e mutante (DdPP1cF269C) de D. discoideum e NcPP1c de N. crassa in vitro. A proteína DdPP1cF269C apresenta características distintas da DdPP1c incluindo maior estabilidade, maior atividade de fosforilase fosfatase e maior sensibilidade frente ao inibidor caliculina A. Estas diferenças devem-se a substituição da cisteína conservada da posição 269 por uma fenilalanina, que é verificada na enzima selvagem. DdPP1c e DdPP1cF269C foram também ensaiadas na presença de INc-1L e INc-1 que são ortólogos de I-2 em N. crassa. Ambas as proteínas recombinantes purificadas exibiram efeito inibidor sobre a atividade de fosforilase fosfatase das DdPP1c recombinantes selvagem e mutante, sendo que INc-1 foi um inibidor duas vezes mais eficiente que INc-1L. Este efeito pode ser devido a um segmento de 38 aminoácidos codificado por um íntron em fase que é retido na isoforma INc-1L. Nossos dados indicam ainda que a mutação F269C não afetou a sensibilidade da DdPP1c recombinante a nenhum dos ortólogos de I-2 testados in vitro. Ensaios de duplo-híbrido utilizando a PP1c selvagem e mutante de D. discoideum (DdPP1c e DdPP1cF269C) e de N. crassa (NcPP1c) como iscas e DdI-2 como presa mostraram que estas proteínas interagiram in vivo. Quando a presa era o INc-1L ou INc-1 a interação ocorreu apenas com a NcPP1c, sendo mais forte no caso de INc-1. As regiões de DdI-2 envolvidas na interação física com a DdPP1c foram mapeadas através da expressão de proteínas truncadas no ensaio de duplo híbrido. Os experimentos apontaram que o carbóxi-terminal de ~100 aminoácidos não é essencial para a interação, mas que o somatório das diversas regiões responde pela integridade da interação. / The serine/threonine phosphatase of type-1 (PP1) is a ubiquous enzyme in the cells and tissues from several species studied and regulates numerous processes such as intermediate metabolism, mRNA splicing, transcription, and apoptosis. PP1 holoenzymes consist of a well-conserved catalytic subunit (PP1c) and one or more variable regulatory subunits. In mammals, more than fifty polypeptides that bind PP1c have been identified, originating holoenzymes with distinct cell locations and specificities. These proteins include cytosolic PP1c inhibitors such as inhibitor-1 (I-1), inhibitor-2 (I-2) and nuclear inhibitor of PP1 (NIPP-1). I-2 orthologs have also been described in Saccharomyces cerevisiae and Neurospora crassa. In the present work, we demonstrate that the genome of the social amoeba Dictyostelium discoideum has a single gene encoding for an I-2 ortholog (DdI-2). Northern blot analyses have shown that DdI-2 mRNA is expressed throughout Dictyostelium developmental cycle at variable levels. We also demonstrated that DdI-2 is a true PP1c inhibitor as its recombinant product is capable of inhibiting the phosphorylase phosphatase activity of wild-type PP1c (DdPP1c) and mutant (DdPP1cF269C) of D. discoideum and NcPP1c of N. crassa in vitro. DdPP1cF269C protein presents distint traits including higher stability, phosphorylase phosphatase activity and sensibility to calyculin A than the wild-type. These differences are originated from the replacement of a well conserved cisteine residue by a phenylalanine found in the wild-type. The wild-type and mutant DdPP1c have also been assayed in the presence of INc-1L and INc-1 which are orthologues to I-2 in N. crassa. Both purified recombinant proteins have shown inhibitory effects over phosphorylase phosphatase activities, with INc-1 being twice more potent than INc-1L. This might be due to the presence of an intron retention event in the latter that results in a insertion of 38 aminoacids. Our data also indicate that F269C mutation did not affect DdPP1c sensitivity to inhibition by all the three recombinant I-2 orthologues in vitro. Yeast two-hybrid assays using wild type (DdPP1c) and mutant (DdPP1cF269C) D. discoideum and N. crassa (NcPP1c) PP1c as preys and the putative inhibitor DdI-2 as a bait showed inequivocally that these proteins interacted in vivo. When the prey was INc-1 or INc-1L the interaction occured only with NcPP1c and was stronger with INc-1. The domains of DdI-2 involved in the interaction with DdPP1c were mapped by two-hybrid interaction assays with DdI-2 deleted mutants. These experiments have pointed out that the DdI-2 carboxi-terminus of ~100 aminoacids is not essential for the interaction but that the sum of all regions is responsible for the integrity of the interaction.
146

Specific adaptations in the proteostasis network of the social amoebae Dictyostelium discoideum lead to an unusual resilience to protein aggregation

Malinovska, Liliana 14 August 2014 (has links) (PDF)
A key prerequisite for cellular and organismal health is a functional proteome. A variety of human protein misfolding diseases are associated with the occurrence of amyloid protein aggregates, such as amyotrophic lateral sclerosis (ALS) or Huntington’s disease. The proteins involved in disease manifestation all contain aggregation-prone sequences of low compositional complexity. Such sequences are also known as prion-like, because of their sequence similarity to yeast prions. Yeast prion proteins are a specific subset of amyloid forming proteins with distinct physio-chemical and functional features, which give them transmissible properties. The aggregation properties of yeast prions and disease-related prion-like proteins reside in structurally independent, prion-forming domains (PrDs). These domains are highly enriched for uncharged polar amino acids, such as glutamine (Q) and asparagine (N). These compositional features can be used to predict prion-like proteins bioinformatically. To investigate the prevalence of prion-like proteins across different organisms, we analyzed a range of eukaryotic proteomes. Our analysis revealed that the slime mold D. discoideum contains the highest number of prion-like N/Q-rich proteins of all organisms. Based on this finding, we hypothesized that D. discoideum could be a valuable model system to study protein homeostasis (proteostasis) and the molecular basis of protein misfolding diseases. To explore how D. discoideum manages its highly aggregation-prone proteome, we analyzed the behavior of several well-characterized misfolding-prone marker proteins (variants of the disease-causing exon 1 of the huntingtin protein as well as wildtype and variant versions of the Q/N-rich yeast prion Sup35NM). Intriguingly, these proteins did not form cytosolic aggregates in D. discoideum, as they do in other organisms. Aggregates, however, formed as a result of heat stress, which indicates that the tested proteins have the capacity to aggregate, but are kept under tight control under normal conditions. Furthermore, when the stress level was reduced, the stress-induced aggregates dissolved, suggesting that D. discoideum has evolved mechanisms to reverse aggregation after a period of acute stress. Together, these findings reveal an unusual resilience of D. discoideum to aggregation-prone proteins, which very likely results from specific adaptations in its proteostasis network. By studying these specific adaptations, we could get important insight into the strategies that nature employs to control and maintain a highly aggregation-prone proteome. So far, our experimental investigations have revealed evidence for three specific adaptations. First, we identified the disaggregase Hsp101 as a key player in the acute stress response of D. discoideum. A functional analysis of Hsp101 in yeast and D. discoideum revealed that it supports thermotolerance. Second, we found evidence for an important role of the nucleus and nucleolus in proteostasis. We discovered that a small fraction of highly aggregation-prone proteins accumulated in the nucleus or nucleolus of D. discoideum cells. The magnitude of this nuclear accumulation could be increased by proteasome impairment, which suggests that the ubiquitin-proteasome system (UPS) is involved. This finding is consistent with previous studies in other organisms and hints at the possibility that D. discoideum disposes of aggregation-prone proteins by degrading them in the nucleus/nucleolus. Third and finally, we found that cells containing nuclear accumulations are asymmetrically distributed in the multicellular developmental stage (slug), suggesting that D. discoideum employs cell-sorting mechanisms to dispose of cells with accumulated protein damage. Although our current understanding of proteostasis in D. discoideum is preliminary, we have gained important insight into the molecular mechanisms and cellular pathways that D. discoideum uses to counteract protein aggregation. Findings from this work will inform similar comparative studies in other organisms and will impact our molecular understanding of protein misfolding diseases and aging. / Eine wesentliche Voraussetzung für die Gesundheit von Zellen und Organismen ist ein funktionales Proteom. Eine Reihe von humanen Protein- Missfaltungs-Erkrankungen, wie Chorea Huntington und Amyotrophe Lateralsklerose (ALS) werden mit dem Auftreten von amyloiden Protein- Aggregaten in Verbindung gebracht. Sämtliche Proteine, die in der Pathogenese dieser Krankheiten eine Rolle spielen, enthalten aggregations-anfällige Sequenzen mit geringer Sequenzkomplexität. Solche Sequenzen werden als Prion-ähnlich bezeichnet, da sie in ihrer Zusammensetzung den Prionen aus der Hefe S. cerevisiae gleichen. Die Prion-Proteine der Hefe gehören zu einer Unterart von amyloid-aggregierenden Proteinen, die durch bestimmte physikochemische und funktionelle Eigenschaften einen infektiösen Charakter erhalten. Die Aggregations-Eigenschaften von Hefeprionen und aggregationsanfällige Proteinen, die mit Erkrankungen in Verbindung gebracht werden, basieren auf strukturell unabhängigen, Prion-bildenden Domänen (prion domain, PrD). Diese Domänen sind angereichert mit polaren Aminosäuren wie Glutamin und Asparagin. Diese Zusammensetzung kann dazu verwendet werden prion-ähnliche Proteine bioinformatisch vorherzusagen. Um die Verbreitung von Prion-ähnlichen Proteinen in verschiedenen Organismen zu untersuchen, analysierten wir eine Reihe von eukaryotischen Proteomen. Unsere Analyse zeigte, dass der Schleimpilz D. discoideum die höchste Anzahl von Prion-ähnlichen N/Q-reichen Proteinen aufzeigt. Aufgrund dieser Erkenntnisse erstellten wir die Hypothese, dass D. discoideum ein nützlicher Modellorganismus sein könnte, um Protein Homöostase (Proteostase) sowie die molekulare Basis von Proteins-Missfaltungs-Erkrankungen zu ergründen. Um zu analysieren, wie D. discoideum mit seinem höchst aggregations-anfälligen Proteom umgehen kann, untersuchten wir das Verhalten mehrerer bereits charakterisierter aggregations-anfälliger Marker-Proteine in D. discoideum. Hierbei verwendeten wir Varianten des krankheits-erzeugenden Exon 1 des humanen Huntingtin Protein sowie den wild-typ und Varianten des N/Q-reichen Hefe Prions Sup35. Interessanterweise bildeten diese Proteine, anders als in anderen Organismen, keine zytosolischen Aggregate in D. discoideum aus. Aggregate wurden jedoch unter Hitzestress-Bedingungen gebildet. Dies deutet darauf hin, dass die getesteten Proteine durchaus das Vermögen zu aggregieren besitzen, jedoch unter normalen Wachstumsbedingungen streng kontrolliert werden. Wenn, darüberhinaus das Stress- Level gesenkt wurde, kam es zur Auflösung der stress-induzierten Aggregate. Dies deutet darauf hin, dass D. discoideum Mechanismen entwickelt hat, um Aggregate nach Perioden von akutem Stress wieder aufzulösen. Zusammengenommen enthüllen diese Erkenntnisse eine ungewöhnliche Widerstandsfähigkeit gegenüber aggregations-anfälligen Proteinen. Diese beruht höchstwahrscheinlich auf spezifischen Modifikationen im Proteostase Netzwerk. Durch die Analyse dieser spezifischen Anpassungen könnten wichtige Einblicke in die Strategien gewährt werden, welche die Natur benutzt, um ein höchst aggregations-anfälliges Proteom zu erhalten und zu kontrollieren. Bisher erbrachten unsere Experimente Anhaltspunkte für drei spezifische Anpassungen. Erstens zeigten wir, dass die Disaggregase Hsp101 eine Schlüsselrolle in der akuten Stressantwort in D. discoideum einnimmt. Eine funktionale Analyse von Hsp101 in D. discoideum und Hefe zeigte, dass die Disaggregase Thermotoleranz fördert. Zweitens haben wir Anhaltspunkte, dass der Nukleus und der Nukleolus eine wichtige Rolle in der Proteostase einnehmen. Eine geringe Fraktion der überaus aggregations-anfälligen Proteine akkumuliert im Nukleus oder Nukleolus von D. discoideum. Das Ausmaß der nuklearen Akkumulation konnte erhöht werden, wenn das Proteasom beeinträchtigt wird. Dies deutet darauf hin, dass das Ubiquitin-Proteasom-System involviert sein könnte. Diese Beobachtung ist im Einklang mit jüngsten Berichten aus anderen Organismen und daraus folgt, dass D. discoideum möglicherweise aggregations-anfällige Proteine durch Abbau im Nukleus entsorgt. Drittens konnten wir feststellen, dass Zellen, die nukleare Akkumulationen enthalten, asymmetrisch in der multizellulären Entwicklungs-Struktur des Pseudoplasmodiums verteilt sind. Dies deutet darauf hin, dass D. discoideum möglicherweise den Zellsortierungsmechanismus während der Entwicklung nutzen kann, um Zellen mit angereicherten Protein-Schäden zu beseitigen. Auch wenn das gegenwärtige Verständnis der Proteostase in D. discoideum nur vorläufig ist, haben wir wichtige Einblicke in die molekularen Mechanismen und zellulären Prozesse erhalten, die D. discoideum verwendet, um Protein-Aggregation zu verhindern. Die Ergebnisse dieser Arbeit werden ähnliche vergleichende Studien in anderen Organismen beeinflussen und Auswirkungen auf unser molekulares Verständnis über Protein-Missfaltungs-Erkrankungen und das Altern haben.
147

Caracterização molecular da proteína DdI-2 e mapeamento de seus domínios de interação com a proteína fosfatase do tipo-1 de Dictyostelium discoideum / Molecular characterization of DdI-2 protein and domain mapping of Dictyostelium discoideum protein phosphatase type-1

Juliana Moreira de Sousa Canavez 04 February 2005 (has links)
A serina/treonina fosfatase do tipo 1 (PP1) é uma enzima ubíqua nas células e nos tecidos das várias espécies em que foi pesquisada e regula vários processos como metabolismo intermediário, processamento de mRNA, transcrição e apoptose. Geralmente a holoenzima PP1 é encontrada como um dímero constituído por uma subunidade catalítica conservada (PP1c) e uma ou mais subunidades reguladoras variáveis. Em mamíferos, já foram identificados mais de 50 polipeptídeos que se associam direta ou indiretamente a PP1c, gerando holoenzimas com localizações celulares e especificidades distintas. Entre estas proteínas estão inibidores citosólicos de PP1c, tais como o inibidor-1 (I-1), o inibidor-2 (I-2) e o inibidor nuclear da PP1 (NIPP-1). Ortólogos do I-2 foram descritos em microorganismos como Saccharomyces cerevisiae e Neurospora crassa. Neste trabalho nós demonstramos que o genoma da ameba social Dictyostelium discoideum possui uma única cópia do gene que codifica um ortólogo do I-2 (DdI-2). Análise através de Northern blot mostrou que o mRNA de DdI-2 é expresso durante o crescimento e ao longo de todo o ciclo de desenvolvimento, com níveis variáveis. Também demonstramos que o gene DdI-2 codifica uma verdadeira proteína inibidora da PP1c uma vez que seu produto recombinante em bactéria é capaz de inibir, com eficácia equivalente, as atividades de fosforilase fosfatase das PP1c recombinantes selvagem (DdPP1c) e mutante (DdPP1cF269C) de D. discoideum e NcPP1c de N. crassa in vitro. A proteína DdPP1cF269C apresenta características distintas da DdPP1c incluindo maior estabilidade, maior atividade de fosforilase fosfatase e maior sensibilidade frente ao inibidor caliculina A. Estas diferenças devem-se a substituição da cisteína conservada da posição 269 por uma fenilalanina, que é verificada na enzima selvagem. DdPP1c e DdPP1cF269C foram também ensaiadas na presença de INc-1L e INc-1 que são ortólogos de I-2 em N. crassa. Ambas as proteínas recombinantes purificadas exibiram efeito inibidor sobre a atividade de fosforilase fosfatase das DdPP1c recombinantes selvagem e mutante, sendo que INc-1 foi um inibidor duas vezes mais eficiente que INc-1L. Este efeito pode ser devido a um segmento de 38 aminoácidos codificado por um íntron em fase que é retido na isoforma INc-1L. Nossos dados indicam ainda que a mutação F269C não afetou a sensibilidade da DdPP1c recombinante a nenhum dos ortólogos de I-2 testados in vitro. Ensaios de duplo-híbrido utilizando a PP1c selvagem e mutante de D. discoideum (DdPP1c e DdPP1cF269C) e de N. crassa (NcPP1c) como iscas e DdI-2 como presa mostraram que estas proteínas interagiram in vivo. Quando a presa era o INc-1L ou INc-1 a interação ocorreu apenas com a NcPP1c, sendo mais forte no caso de INc-1. As regiões de DdI-2 envolvidas na interação física com a DdPP1c foram mapeadas através da expressão de proteínas truncadas no ensaio de duplo híbrido. Os experimentos apontaram que o carbóxi-terminal de ~100 aminoácidos não é essencial para a interação, mas que o somatório das diversas regiões responde pela integridade da interação. / The serine/threonine phosphatase of type-1 (PP1) is a ubiquous enzyme in the cells and tissues from several species studied and regulates numerous processes such as intermediate metabolism, mRNA splicing, transcription, and apoptosis. PP1 holoenzymes consist of a well-conserved catalytic subunit (PP1c) and one or more variable regulatory subunits. In mammals, more than fifty polypeptides that bind PP1c have been identified, originating holoenzymes with distinct cell locations and specificities. These proteins include cytosolic PP1c inhibitors such as inhibitor-1 (I-1), inhibitor-2 (I-2) and nuclear inhibitor of PP1 (NIPP-1). I-2 orthologs have also been described in Saccharomyces cerevisiae and Neurospora crassa. In the present work, we demonstrate that the genome of the social amoeba Dictyostelium discoideum has a single gene encoding for an I-2 ortholog (DdI-2). Northern blot analyses have shown that DdI-2 mRNA is expressed throughout Dictyostelium developmental cycle at variable levels. We also demonstrated that DdI-2 is a true PP1c inhibitor as its recombinant product is capable of inhibiting the phosphorylase phosphatase activity of wild-type PP1c (DdPP1c) and mutant (DdPP1cF269C) of D. discoideum and NcPP1c of N. crassa in vitro. DdPP1cF269C protein presents distint traits including higher stability, phosphorylase phosphatase activity and sensibility to calyculin A than the wild-type. These differences are originated from the replacement of a well conserved cisteine residue by a phenylalanine found in the wild-type. The wild-type and mutant DdPP1c have also been assayed in the presence of INc-1L and INc-1 which are orthologues to I-2 in N. crassa. Both purified recombinant proteins have shown inhibitory effects over phosphorylase phosphatase activities, with INc-1 being twice more potent than INc-1L. This might be due to the presence of an intron retention event in the latter that results in a insertion of 38 aminoacids. Our data also indicate that F269C mutation did not affect DdPP1c sensitivity to inhibition by all the three recombinant I-2 orthologues in vitro. Yeast two-hybrid assays using wild type (DdPP1c) and mutant (DdPP1cF269C) D. discoideum and N. crassa (NcPP1c) PP1c as preys and the putative inhibitor DdI-2 as a bait showed inequivocally that these proteins interacted in vivo. When the prey was INc-1 or INc-1L the interaction occured only with NcPP1c and was stronger with INc-1. The domains of DdI-2 involved in the interaction with DdPP1c were mapped by two-hybrid interaction assays with DdI-2 deleted mutants. These experiments have pointed out that the DdI-2 carboxi-terminus of ~100 aminoacids is not essential for the interaction but that the sum of all regions is responsible for the integrity of the interaction.
148

Molecular mechanism of glycogen phosphorylase gene regulation during Dictyostelium development

Yin, Yizhong 10 November 2005 (has links)
Development of multicellular organisms is one of the most fundamental but least understood biological processes. Due to its simple life cycle, the lower eukaryote Dictyostelium has been used as a model system to study several basic biological problems, such as cell differentiation, cell motility, cell adhesion, signal transduction, and especially gene regulation. Glycogen phosphorylase is the enzyme that initiates one of the key biochemical pathways, glycogen degradation, during Dictyostelium discoideum development. Two forms of glycogen phosphorylase, gpl and gp2, exist in D. discoideum with gp1 being active in vegetative cells and gp2 in differentiating cells. Study of glycogen phosphorylase gene regulation clearly will provide insight into the molecular mechanism of D. discoideum development and facilitate understanding of development in general. Two distinct genes that encode the two forms of glycogen phosphorylase were cloned. The nucleotide sequence analysis of the gp2 gene revealed an open reading frame of 2976 bp, that consists of three exons separated by two introns. An interesting feature in the gene is a 45 bp sequence in the second exon that contains 11 CAA trinucleotide repeats. The entire 5' and 3' non-coding regions of the gp2 gene and the whole 5' noncoding region of the gp1 gene have also been cloned. The regulation of the gp2 gene by Dictyostelium developmental signals was studied. Both cyclic AMP (cAMP) and Differentiation Inducing Factor (DIF) were discovered to induce gp2 gene expression during differentiation. DIF was also found to inhibit the cAMP responsiveness of the gene. Both cAMP and DIF induction of the gene were repressed by NH₃. Another developmental signalling molecule, adenosine, was involved in gp2 gene regulation through the inhibition of the DIF-mediated expression. The cell-type-specificity of the gp2 gene were also investigated. The gene was found to be expressed in both prestalk/stalk and prespore/spore cells. This is in agreement with the cAMP and DIF inducibility of the gene since the former molecule is a spore-cell morphogen, while the latter is a stalk-cell morphogen. A model of gp2 gene regulation during development is proposed, based on these findings. The two gp? introns and the 45 bp CAA repeat were studied by deletion of these elements. However, there were no alterations of gp2 gene expression observed after these deletions. Also investigated was genomic structural alteration in gp1- mutants that were obtained through homologous recombination and antisense RNA. Southern analysis revealed that the normal gp1 gene was disrupted in all homologous recombination transformants and in half of the antisense RNA transformants. Finally, for the first time, an extrachromosomal luciferase reporter vector has been established for the study of cis-acting regulatory elements in D. discoideum. / Ph. D.
149

Characterization and localization of a cyclic AMP dependant protein kinase from Dictyostelium discoideum

Vaughan, Roxanne Louise January 1985 (has links)
A developmentally regulated cyclic AMP-dependent protein kinase has been recently reported in Dictyostelium discoideum. This report describes some of the physical and kinetic properties of the cAMP-dependent holoenzyme and its subunits. Gel filtration data suggests a holoenzyme Mr of 170,000-190,000, and catalytic and regulatory subunit Mrs of 40,000 and 49,000, respectively. These molecular weight determinations are compatible with an R₂C₂ subunit arrangement of the holoenzyme. Kinase activity required the presence of Mg²⁺ but cAMP binding to the enzyme was not dependent on divalent metal ions. The pH optimum for kinase activity was 7.5; the cAMP binding activity was not affected over a pH range of 5.0-10.0. The holoenzyme and isolated regulatory subunit had identical cAMP Kds of 28 nM. Cyclic AMP was able to dissociate the subunits when analyzed by density gradient centrifugation. Histone VII-S activated the subunits in the absence of cAMP but did not produce their dissociation. In contrast to the gel filtration data, sedimentation values indicated a dimeric holoenzyme structure. Reassociation of the subunits in the absence of cAMP occurred rapidly and was not dependent upon a preincubation with MgATP. High NaCl and low pH depressed both the total kinase activity and the ability of the subunits to reassociate as determined by activity ratio. MgATP did not decrease the ability of the holoenzyme to bind cAMP, neither did the holoenzyme possess a high affinity MgATP binding site. By the use of microdissection techniques holoenzyme levels were determined in individuals at each stage of development and in each cell type during development. Kinase activity was low and non-cAMP dependent in early aggregates but increased and became cAMP-dependent in later aggregates. Maximum activity and cAMP-dependency occurred during the slug and culmination stages. The only differential distribution of the kinase within a single-stage occurred during culmination when the activity in the stalks was approximately one-fourth that in the prespore mass. Preliminary evidence indicates that this difference is not due to an inhibitor. / Ph. D. / incomplete_metadata
150

Mechanik und Dynamik biologischer Modellsysteme am Beispiel aktingefüllter Vesikel und synchroner Zellmigration von Dictyostelium discoideum / Mechanics and dynamics of biological model systems examining actin-filled vesicles and synchronous cell migration of Dictyostelium discoideum

Schäfer, Edith Elisabeth 19 September 2012 (has links)
Diese Arbeit beschäftigt sich mit zwei verschiedenen Modellsystemen, die Aufschluss über die Mechanik und die Dynamik von zellulären Systemen geben sollen. Zum Einsatz kommt zum einen der Modellorganismus Dictyostelium discoideum, dessen kollektives Migrationsverhalten analysiert wird und zum anderen wird die Mechanik von aktingefüllten Riesenvesikeln als artifizielles Modellsystem etabliert.

Page generated in 0.0355 seconds