• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 651
  • 155
  • 138
  • 104
  • 79
  • 22
  • 18
  • 18
  • 15
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 1500
  • 198
  • 195
  • 182
  • 173
  • 160
  • 141
  • 138
  • 135
  • 119
  • 108
  • 107
  • 101
  • 97
  • 93
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Studies of Aggregation Pathways for Amyloidogenic Peptides by Dielectric Relaxation Spectroscopy

Barry, Donald 22 April 2013 (has links)
Diseases associated with amyloid aggregation have been a growing focus of medical research in recent years. Altered conformations of amyloidogenic peptides assemble to form soluble aggregates that deposit into the brain and spleen causing disorders such as Alzheimer's disease and Type II diabetes. Emergent theories predict that fibrils may not be the toxic form of amyloidogenic structures and that smaller oligomer and protofibril aggregates may be the primary source of cellular function damage. Studies show that these amyloidogenic aggregates are characterized by an increased number of poorly dehydrated hydrogen backbones and large surface densities of patches of bulk like water which favor protein association. When proteins aggregate to form larger structures, there is a redistribution of water surrounding these proteins. The water dynamics of amyloidogenic aggregation is different than the monomeric form and has a decrease in the number of patches occupied by molecules with bulk-like water behavior. We demonstrate that the redistribution of water during amyloid aggregation is reflected in a change in the dielectric relaxation signal of protein-solvent mixtures. We use dielectric relaxation spectroscopy (DRS) as a tool for studying the dynamics of amyloidogenic peptides--amyloid beta (Ab 1-42) and human islet amyloid polypeptide (hIAPP)--during self-assembly and aggregation. Non-amyloidogenic analogs-- scrambled (Ab 42-1) and rat islet amyloid polypeptide (rIAPP)--were used as controls. We first present studies of amyloidogenic peptides in a deionized water buffer at room temperature as a function of concentration and incubation time. From this we were able to determine differences in amyloidogenic and non-amyloidogenic peptides through the dielectric modulus. We next present the same analytes in a deionized water-glycerol buffer to facilitate the study of the dielectric permittivity at sub-freezing temperatures and model the kinetics of the alpha- and beta- relaxation processes. We conclude our work by studying the peptides in a bovine serum albumin (BSA) and glycerol buffer to demonstrate dielectric spectroscopy as a sensitive tool for measuring amyloidogenic peptides in an in vivo- like condition.
32

Mixed-mode microsystems for biological cell actuation and analysis

Muir, Keith Ross January 2017 (has links)
Personalised medicine is widely considered to be the future of global healthcare, where diagnosis, treatment, and potentially even drug development, will become specific to, and optimised for, each individual patient. Traditional population based cell studies suppress the influence of outlier cells that are frequently those of most clinical relevance. Hence single-cell analysis is becoming increasingly important in understanding disease, aiding diagnosis and selecting tailored treatment; but remains the preserve of biomedical laboratories far from the patient. Current instruments depend upon cell-labelling to identify the cell type(s) of interest, which require that these be chosen a-priori and may not be those most clinically relevant. Furthermore, cell-labelling is fundamentally subjective, requiring highly-skilled operators to decide upon the validity of each and every test. Therefore, new test methods need to be developed to enable the widespread adoption of single-cell analysis. The passive electrical properties of biological cells are known to be indicative of the specific cell type, but no technology has demonstrated their comprehensive measurement within a mass-manufacturable device. This work aims to show that biologically meaningful information can be obtained in the form of identifiable “cell signatures” through broadband frequency measurements spanning 100 kHz to 100 MHz that exploit the properties of differential electric fields. This hypothesis is tested through the design, implementation and experimental testing of a dedicated microsystem that integrates two novel designs of electrical sensor within a standard, mass-manufacturable Complementary Metal-Oxide Semiconductor microelectronics technology. One sensor measures the absolute electrical environment above a single sense electrode. The other measures the difference in electrical environment between a pair of electrodes, with view to provide information regarding the suspended cell only, through rejecting the common signal due to its suspending medium. Both sensors are shown capable of detecting individual biological cells in physiological solution, and the differential sensor capable of identifying individually-fixed red blood cells, cervical cancer HeLa cells, and three diameters of homogeneous polystyrene micro-beads of comparable size, all while suspended in physiological saline. These results confirm the hypothesis that differential electric fields provide greater distinction of suspended cells from their environment than existing electrical methods. This finding shows that electrode polarisation arising from proximity to liquids, and particularly physiological media, can be overcome through fully-differential electrical cell sensing. However, misalignment between cells and sensor electrodes limits the sensitivity achieved with the microsystem. Methods to overcome such alignment issues should be investigated in future work, along with higher frequency measurements beyond those presented here.
33

Thermal characterization technique for thin dielectric films

Indermuehle, Scott W. 14 April 1998 (has links)
A phase sensitive measurement technique that permits the simultaneous determination of two independent thermal properties of thin dielectric films is presented. Applying the technique results in a film's thermal diffusivity and effusivity, from which the thermal conductivity and specific heat can be calculated. The technique involves measuring a specimen's front surface temperature response to a periodic heating signal. The heating signal is produced by passing current through a thin layer of nichrome that is deposited on the specimen's surface, and the temperature response is measured with a HgCdTe infrared detector operating at 77 K. The signal that is produced by the infrared detector is first conditioned, and then sent to a lock-in amplifier. The lock-in is used to extract the phase shift present between the temperature and heating signal through a frequency range of 500 Hz-20 kHz. The corresponding phase data is fit to an analytical model using thermal diffusivity and effusivity as fitting parameters. The method has been applied effectively to 1.72 ��m films of Si0��� that have been thermally grown on a silicon substrate. Thermal properties have been obtained through a temperature range of 25��C-300��C. One unanticipated outcome stemming from analysis of the experimental data is the ability to extract both the thermal conductivity and specific heat of a thin film from phase information alone, with no need for signal magnitude. This improves the overall utility of the measurement process and provides a 'clean', direct path with fewer assumptions between data and final results. The thermal properties determined so far with this method are consistent with past work on Si0��� films. / Graduation date: 1998
34

Thickness dependence multiferroics property of Bi0.9Pb0.1FeO3 thin film

Peng, Chin-Chuan 12 September 2009 (has links)
In this study, we study the annealing effect of Bi0.9Pb0.1FeO3 bulk in various time span and the various growth conditions of Bi0.9Pb0.1FeO3 thin film to physical proporties, such as crystal structure, surface amorphous, delectric properties. With these effort, this study wish to find a better growth condition for Bi0.9Pb0.1FeO3 film that exhibit the best ferroelectric property, and to understant the possible mechanism underlaying the growth conditions to the physical properties. It is found that the doping of Pb in Bi0.9Pb0.1FeO3 compound does stabalize the formation of single phase Bi0.9Pb0.1FeO3 ,however, this stabalization can only postpone the decay of Bi0.9Pb0.1FeO3 properties when is annealed in a long period of time. The crystal strucutre of Bi0.9Pb0.1FeO3 is very close to a pseudocubic structure in which oxgyen sites locate noncenter-symmetrically that generates a stronge electric polariztion. The various growth conditions has a very stong influence to the physical properties of Bi0.9Pb0.1FeO3 thin films. For those films grwon at 700oC exibits the best delectricity. The grain size of films grows as grwoth time as resutl of this the thicker the film thelarger the grain size. The electric hysterises property measured by PFM is observed for grain itself, however, the grain boundaries where accumulates many possible defects exhibits a large electric leakage therefore no saturated polarization is observed if a large area of electrode is used.
35

Plasma damaging process of porous ultra-low-k dielectrics and dielectric repair

Huang, Huai, Ph. D. 28 September 2012 (has links)
The Ultra-low-k material is required to reduce the RC time delay in the integrated circuits. However, the integration of the porous low-k material into the on-chip interconnects was impeded by the plasma induced damage during etching and photoresist stripping processes. This dissertation aims to study the mechanism of plasma damage to porous ultra-low-k dielectrics with the objective to minimize the damage and to develop methods and processes to restore the low-k dielectric after the plasma damage. First, the plasma etching induced surface roughening was studied on blanket porous SiCOH films in the fluorocarbon based plasma. Substantial surface roughening was found in the low polymerization region, where the surface roughening process was initiated by the unevenly distribution of surface fluorocarbon polymers in the pore structure and enhanced by ion induced surface densification. With oxygen addition, the surface densification layer increased the radial diffusion rate difference between the top and the bottom of the pits, resulting in further increase of the surface roughness. The best process optimization was found at a "threshold point" where the surface polymerization level is just high enough to suppress the roughness initiation. The second part of this dissertation investigates the mechanism of the oxygen plasma damaging process. The roles of plasma constituents (i.e. ions, radicals and photons with different wavelengths) were differentiated by an on-wafer filter system. Oxygen radical was identified as the most critical and its damage effect was enhanced by photons with wavelength smaller than 185nm. The oxygen radical kinetics in the porous structure of low-k, including diffusion, reaction and recombination, was described analytically with a plasma altered layer model and then simulated with a Monte Carlo computational method, which give guidelines to minimize the damage. The analytical model of oxygen radical kinetic process is also used to investigate the oxygen plasma damage to patterned low-k structure, which is confirmed by experiments. Finally, the dielectric recovery was studied using silylation and UV broadband thermal treatment, both individually and in combination. After both vapor and supercritical CO₂ silylation, surface carbon and hydrophobicity were partially recovered. However, the recovery effect was limited to the surface. In comparison, UV treatment can effectively remove water from the bulk of the damaged film and consolidate the silanol bonds with the help of thermal activation. The combination of UV and silylation treatments is more effectively for dielectric recovery than UV or silylation alone. The "UV first" treatment provided a better recovery in sequential processes. Under the same conditions, simultaneous treatments by silylation and UV irradiation achieved better bulk and surface recovery than the sequential process. / text
36

Gate current modeling through high-k materials and compact modeling of gate capacitance

Mudanai, Sivakumar Panneerselvam 28 March 2011 (has links)
Not available / text
37

GEOMETRICAL REPRESENTATIONS OF THE TRANSVERSE GOOS-HAENCHEN SHIFT FOR CYLINDRICAL DIELECTRIC WAVEGUIDE MODES

Richard, Fred Vincent, 1938- January 1977 (has links)
No description available.
38

Dielectric characterization of wood and wood infiltrated with ceramic precursors

Duchow, Kirk J. 12 1900 (has links)
No description available.
39

Cross linking molecular systems to form ultrathin dielectric layers

Feng, Danqin January 1900 (has links)
Thesis (Ph.D.)--University of Nebraska-Lincoln, 2007. / Title from title screen (site viewed Nov. 9, 2007). PDF text: iv, 129 p. : ill. ; 5 Mb. UMI publication number: AAT 3266778. Includes bibliographical references. Also available in microfilm and microfiche formats.
40

Establish the dielectric properties of a number of wood species for a range of frequencies, temperatures and pressures

Daian, Georgiana. January 2005 (has links)
Thesis (PhD) - Swinburne University of Technology, Industrial Research Institute Swinburne - 2005. / Doctor of Philosophy, Industrial Research Institute of Swinburne University of Technology, 2005. Typescript. Includes bibliographical references (p. 140-150).

Page generated in 0.0157 seconds