• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 8
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 107
  • 107
  • 29
  • 23
  • 22
  • 16
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Über Zusammenhänge von leichten Tails, regulärer Variation und Extremwerttheorie / On Some Connections between Light Tails, Regular Variation and Extremes

Janßen, Anja 03 November 2010 (has links)
No description available.
62

On the classification of integrable differential/difference equations in three dimensions

Roustemoglou, Ilia January 2015 (has links)
Integrable systems arise in nonlinear processes and, both in their classical and quantum version, have many applications in various fields of mathematics and physics, which makes them a very active research area. In this thesis, the problem of integrability of multidimensional equations, especially in three dimensions (3D), is explored. We investigate systems of differential, differential-difference and discrete equations, which are studied via a novel approach that was developed over the last few years. This approach, is essentially a perturbation technique based on the so called method of dispersive deformations of hydrodynamic reductions . This method is used to classify a variety of differential equations, including soliton equations and scalar higher-order quasilinear PDEs. As part of this research, the method is extended to differential-difference equations and consequently to purely discrete equations. The passage to discrete equations is important, since, in the case of multidimensional systems, there exist very few integrability criteria. Complete lists of various classes of integrable equations in three dimensions are provided, as well as partial results related to the theory of dispersive shock waves. A new definition of integrability, based on hydrodynamic reductions, is used throughout, which is a natural analogue of the generalized hodograph transform in higher dimensions. The definition is also justified by the fact that Lax pairs the most well-known integrability criteria are given for all classification results obtained.
63

Stability of Linear Difference Systems in Discrete and Fractional Calculus

Er, Aynur 01 April 2017 (has links)
The main purpose of this thesis is to define the stability of a system of linear difference equations of the form, ∇y(t) = Ay(t), and to analyze the stability theory for such a system using the eigenvalues of the corresponding matrix A in nabla discrete calculus and nabla fractional discrete calculus. Discrete exponential functions and the Putzer algorithms are studied to examine the stability theorem. This thesis consists of five chapters and is organized as follows. In the first chapter, the Gamma function and its properties are studied. Additionally, basic definitions, properties and some main theorem of discrete calculus are discussed by using particular example. In the second chapter, we focus on solving the linear difference equations by using the undetermined coefficient method and the variation of constants formula. Moreover, we establish the matrix exponential function which is the solution of the initial value problems (IVP) by the Putzer algorithm.
64

Discrete Nonlinear Planar Systems and Applications to Biological Population Models

Lazaryan, Shushan, LAzaryan, Nika, Lazaryan, Nika 01 January 2015 (has links)
We study planar systems of difference equations and applications to biological models of species populations. Central to the analysis of this study is the idea of folding - the method of transforming systems of difference equations into higher order scalar difference equations. Two classes of second order equations are studied: quadratic fractional and exponential. We investigate the boundedness and persistence of solutions, the global stability of the positive fixed point and the occurrence of periodic solutions of the quadratic rational equations. These results are applied to a class of linear/rational systems that can be transformed into a quadratic fractional equation via folding. These results apply to systems with negative parameters, instances not commonly considered in previous studies. We also identify ranges of parameter values that provide sufficient conditions on existence of chaotic and multiple stable orbits of different periods for the planar system. We study a second order exponential difference equation with time varying parameters and obtain sufficient conditions for boundedness of solutions and global convergence to zero. For the autonomous case, we show occurrence of multistable periodic and nonperiodic orbits. For the case where parameters are periodic, we show that the nature of the solutions differs qualitatively depending on whether the period of the parameters is even or odd. The above results are applied to biological models of populations. We investigate a broad class of planar systems that arise in the study of stage-structured single species populations. In biological contexts, these results include conditions on extinction or survival of the species in some balanced form, and possible occurrence of complex and chaotic behavior. Special rational (Beverton-Holt) and exponential (Ricker) cases are considered to explore the role of inter-stage competition, restocking strategies, as well as seasonal fluctuations in the vital rates.
65

The surface area preserving mean curvature flow

McCoy, James A. (James Alexander), 1976- January 2002 (has links)
Abstract not available
66

Three dimensional heterogeneous finite element method for static multi‐group neutron diffusion

Aydogdu, Elif Can 01 August 2010 (has links)
Because current full‐core neutronic‐calculations use two‐group neutron diffusion and rely on homogenizing fuel assemblies, reconstructing pin powers from such a calculation is an elaborate and not very accurate process; one which becomes more difficult with increased core heterogeneity. A three‐dimensional Heterogeneous Finite Element Method (HFEM) is developed to address the limitations of current methods by offering fine‐group energy representation and fuel‐pin‐level spatial detail at modest computational cost. The calculational cost of the method is roughly equal to the calculational cost of the Finite Differences Method (FDM) using one mesh box per fuel assembly and a comparable number of energy groups. Pin‐level fluxes are directly obtained from the method’s results without the need for reconstruction schemes. / UOIT
67

Development of Nabla Fractional Calculus and a New Approach to Data Fitting in Time Dependent Cancer Therapeutic Study

Acar, Nihan 21 May 2012 (has links)
The aim of this thesis is to develop discrete fractional models of tumor growth for a given data and to estimate parameters of these models in order to have better data tting. We use discrete nabla fractional calculus because we believe the discrete counterpart of this mathematical theory will give us a better and more accurate outcome. This thesis consists of ve chapters. In the rst chapter, we give the history of the fractional calculus, and we present some basic de nitions and properties that are used in this theory. We de ne nabla fractional exponential and then nabla fractional trigonometric functions. In the second chapter, we concentrate on completely monotonic functions on R, and we introduce completely monotonic functions on discrete domain. The third chapter presents discrete Laplace N-transform table which is a great tool to nd solutions of -th order nabla fractional di erence equations. Furthermore, we nd the solution of nonhomogeneous up to rst order nabla fractional di erence equation using N-transform. In the fourth chapter, rst we give the de nition of Casoration for the set of solutions up to n-th order nabla fractional equation. Then, we state and prove some basic theorems about linear independence of the set of solutions. We focus on the solutions of up to second order nabla fractional di erence equation. We examine these solutions case by case namely, for the real and distinct characteristic roots, real and same, and complex ones. The fth chapter emphasizes the aim of this thesis. First, we give a vi brief introduction to parameter estimation with Gomperts and Logistic curves. In addition, we recall a statistical method called cross-validation for prediction. We state continuous, discrete, continuous fractional and discrete fractional forms of Gompertz and Logistic curves. We use the tumor growth data for twenty-eight mice for the comparison. These control mice were inoculated with tumors but did not receive any succeeding treatment. We claim that the discrete fractional type of sigmoidal curves have the best data tting results when they are compared to the other types of models.
68

The application of RV Southwells' relaxation methods to the solution of problems in torsion of prismatic bars

Leitner, Murray Irving, 1922- January 1949 (has links)
No description available.
69

Continuous symmetries of difference equations.

Nteumagne, Bienvenue Feugang. 04 June 2013 (has links)
We consider the study of symmetry analysis of difference equations. The original work done by Lie about a century ago is known to be one of the best methods of solving differential equations. Lie's theory of difference equations on the contrary, was only first explored about twenty years ago. In 1984, Maeda [42] constructed the similarity methods for difference equations. Some work has been done in the field of symmetries of difference equations for the past years. Given an ordinary or partial differential equation (PDE), one can apply Lie algebra techniques to analyze the problem. It is commonly known that the number of independent variables can be reduced after the symmetries of the equation are obtained. One can determine the optimal system of the equation in order to get a reduction of the independent variables. In addition, using the method, one can obtain new solutions from known ones. This feature is interesting because some differential equations have apparently useless trivial solutions, but applying Lie symmetries to them, more interesting solutions are obtained. The question arises when it happens that our equation contains a discrete quantity. In other words, we aim at investigating steps to be performed when we have a difference equation. Doing so, we find symmetries of difference equations and use them to linearize and reduce the order of difference equations. In this work, we analyze the work done by some researchers in the field and apply their results to some examples. This work will focus on the topical review of symmetries of difference equations and going through that will enable us to make some contribution to the field in the near future. / Thesis (M.Sc.)-University of KwaZulu-Natal, Westville, 2011.
70

Effectiveness of the hybrid Levine equipercentile and modified frequency estimation equating methods under the common-item nonequivalent groups design

Hou, Jianlin. Vispoel, Walter P. January 2007 (has links)
Thesis advisor: Walter P. Vispoel. Includes bibliographic references (p. 194-196).

Page generated in 0.0294 seconds