• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 96
  • 43
  • 26
  • 24
  • 7
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 282
  • 282
  • 74
  • 61
  • 55
  • 54
  • 34
  • 30
  • 29
  • 28
  • 28
  • 28
  • 26
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles

Kirchhoff-Lukat, Charlotte Sophie January 2018 (has links)
This thesis explores aspects of generalized geometry, a geometric framework introduced by Hitchin and Gualtieri in the early 2000s. In the first part, we introduce a new class of submanifolds in stable generalized complex manifolds, so-called Lagrangian branes with boundary. We establish a correspondence between stable generalized complex geometry and log symplectic geometry, which allows us to prove results on local neighbourhoods and small deformations of this new type of submanifold. We further investigate Lefschetz thimbles in stable generalized complex Lefschetz fibrations and show that Lagrangian branes with boundary arise in this context. Stable generalized complex geometry provides the simplest examples of generalized complex manifolds which are neither complex nor symplectic, but it is sufficiently similar to symplectic geometry for a multitude of symplectic results to generalize. Our results on Lefschetz thimbles in stable generalized complex geometry indicate that Lagrangian branes with boundary are part of a potential generalisation of the Wrapped Fukaya category to stable generalized complex manifolds. The work presented in this thesis should be seen as a first step towards the extension of Floer theory techniques to stable generalized complex geometry, which we hope to develop in future work. The second part of this thesis studies Dorfman brackets, a generalisation of the Courant- Dorfman bracket, within the framework of double vector bundles. We prove that every Dorfman bracket can be viewed as a restriction of the Courant-Dorfman bracket on the standard VB-Courant algebroid, which is in this sense universal. Dorfman brackets have previously not been considered in this context, but the results presented here are reminiscent of similar results on Lie and Dull algebroids: All three structures seem to fit into a more general duality between subspaces of sections of the standard VB-Courant algebroid and brackets on vector bundles of the form T M ⊕ E ∗ , E → M a vector bundle. We establish a correspondence between certain properties of the brackets on one, and the subspaces on the other side.
62

Conformal transformations, curvature, and energy

Ligo, Richard G. 01 May 2017 (has links)
Space curves have a variety of uses within mathematics, and much attention has been paid to calculating quantities related to such objects. The quantities of curvature and energy are of particular interest to us. While the notion of curvature is well-known, the Mobius energy is a much newer concept, having been first defined by Jun O'Hara in the early 1990s. Foundational work on this energy was completed by Freedman, He, and Wang in 1994, with their most important result being the proof of the energy's conformal invariance. While a variety of results have built those of Freedman, He, and Wang, two topics remain largely unexplored: the interaction of curvature and Mobius energy and the generalization of the Mobius energy to curves with a varying thickness. In this thesis, we investigate both of these subjects. We show two fundamental results related to curvature and energy. First, we show that any simple, closed, twice-differentiable curve can be transformed in an energy-preserving and length-preserving way that allows us to make the pointwise curvature arbitrarily large at a point. Next, we prove that the total absolute curvature of a twice-differentiable curve is uniformly bounded with respect to conformal transformations. This is accomplished mainly via an analytic investigation of the effect of inversions on total absolute curvature. In the second half of the thesis, we define a generalization of the Mobius energy for simple curves of varying thickness that we call the "nonuniform energy." We call such curves "weighted knots," and they are defined as the pairing of a curve parametrization and positive, continuous weight function on the same domain. We then calculate the first variation formulas for several different variations of the nonuniform energy. Variations preserving the curve shape and total weight are shown to have no minimizers. Variations that "slide" the weight along the curve are shown to preserve energy is special cases.
63

Des espaces de Hadamard symétriques de dimension infinie et de rang fini

Duchesne, Bruno 15 July 2011 (has links) (PDF)
Cette thèse se place dans le cadre d'une généralisation CAT(0) des espaces riemanniens symétriques à courbure négative. En particulier, nos espaces ne seront pas nécessairement localement compacts. Un espace CAT(0) symétrique est un espace CAT(0) complet, sans branchement géodésique et possédant une involution isométrique en chaque point fixant uniquement ce point. Avec l'hypothèse supplémentaire de compacité locale, on retrouve les espaces riemanniens symétriques à courbure négative classés par E. Cartan. Nous nous intéressons à une famille particulière des espaces CAT(0) symétriques qui possèdent la propriété remarquable d'ˆetre de dimension infinie et de rang fini. C'est une famille d'espaces (Xp)p∈N∗ où Xp = O(p, ∞)/ (O(p) × O(∞)) . Nous montrons que ces espaces sont des espaces CAT(0) symétriques de dimension télescopique p. Ce qui implique, par exemple, que tout groupe moyennable agissant continûment par isométries sur Xp, fixe un point au bord ou laisse invariant un sous-espace isométrique à un espace euclidien. Inspir ́es par le théorème de superrigidité de G. Margulis, nous montrons l'existence d'applications de Furstenberg, ce qui constitue la première étape dans un programme de superrigidité pour ces espaces symétriques de dimension infinie mais de rang fini.
64

Differential Geometry, Surface Patches and Convergence Methods

Grimson, W.E.L. 01 February 1979 (has links)
The problem of constructing a surface from the information provided by the Marr-Poggio theory of human stereo vision is investigated. It is argued that not only does this theory provide explicit boundary conditions at certain points in the image, but that the imaging process also provides implicit conditions on all other points in the image. This argument is used to derive conditions on possible algorithms for computing the surface. Additional constraining principles are applied to the problem; specifically that the process be performable by a local-support parallel network. Some mathematical tools, differential geometry, Coons surface patches and iterative methods of convergence, relevant to the problem of constructing the surface are outlined. Specific methods for actually computing the surface are examined.
65

A Modern Differential Geometric Approach to Shape from Shading

Saxberg, Bror V. H. 01 June 1989 (has links)
How the visual system extracts shape information from a single grey-level image can be approached by examining how the information about shape is contained in the image. This technical report considers the characteristic equations derived by Horn as a dynamical system. Certain image critical points generate dynamical system critical points. The stable and unstable manifolds of these critical points correspond to convex and concave solution surfaces, giving more general existence and uniqueness results. A new kind of highly parallel, robust shape from shading algorithm is suggested on neighborhoods of these critical points. The information at bounding contours in the image is also analyzed.
66

Local Mixture Model in Hilbert Space

Zhiyue, Huang 26 January 2010 (has links)
In this thesis, we study local mixture models with a Hilbert space structure. First, we consider the fibre bundle structure of local mixture models in a Hilbert space. Next, the spectral decomposition is introduced in order to construct local mixture models. We analyze the approximation error asymptotically in the Hilbert space. After that, we will discuss the convexity structure of local mixture models. There are two forms of convexity conditions to consider, first due to positivity in the $-1$-affine structure and the second by points having to lie inside the convex hull of a parametric family. It is shown that the set of mixture densities is located inside the intersection of the sets defined by these two convexities. Finally, we discuss the impact of the approximation error in the Hilbert space when the domain of mixing variable changes.
67

Local Mixture Model in Hilbert Space

Zhiyue, Huang 26 January 2010 (has links)
In this thesis, we study local mixture models with a Hilbert space structure. First, we consider the fibre bundle structure of local mixture models in a Hilbert space. Next, the spectral decomposition is introduced in order to construct local mixture models. We analyze the approximation error asymptotically in the Hilbert space. After that, we will discuss the convexity structure of local mixture models. There are two forms of convexity conditions to consider, first due to positivity in the $-1$-affine structure and the second by points having to lie inside the convex hull of a parametric family. It is shown that the set of mixture densities is located inside the intersection of the sets defined by these two convexities. Finally, we discuss the impact of the approximation error in the Hilbert space when the domain of mixing variable changes.
68

Ricci Yang-Mills Flow

Streets, Jeffrey D. 04 May 2007 (has links)
Let (Mn, g) be a Riemannian manifold. Say K ! E ! M is a principal K-bundle with connection A. We define a natural evolution equation for the pair (g,A) combining the Ricci flow for g and the Yang-Mills flow for A which we dub Ricci Yang-Mills flow. We show that these equations are, up to di eomorphism equivalence, the gradient flow equations for a Riemannian functional on M. Associated to this energy functional is an entropy functional which is monotonically increasing in areas close to a developing singularity. This entropy functional is used to prove a non-collapsing theorem for certain solutions to Ricci Yang-Mills flow. We show that these equations, after an appropriate change of gauge, are equivalent to a strictly parabolic system, and hence prove general unique short-time existence of solutions. Furthermore we prove derivative estimates of Bernstein-Shi type. These can be used to find a complete obstruction to long-time existence, as well as to prove a compactness theorem for Ricci Yang Mills flow solutions. Our main result is a fairly general long-time existence and convergence theorem for volume-normalized solutions to Ricci Yang-Mills flow. The limiting pair (g,A) satisfies equations coupling the Einstein and Yang-Mills conditions on g and A respectively. Roughly these conditions are that the associated curvature FA must be large, and satisfy a certain “stability” condition determined by a quadratic action of FA on symmetric two-tensors.
69

Robustness analysis of linear estimators

Tayade, Rajeshwary 30 September 2004 (has links)
Robustness of a system has been defined in various ways and a lot of work has been done to model the system robustness , but quantifying or measuring robustness has always been very difficult. In this research we consider a simple system of a linear estimator and then attempt to model the system performance and robustness in a geometrical manner which admits an analysis using the differential geometric concepts of slope and curvature. We try to compare two different types of curvatures, namely the curvature along the maximum slope of a surface and the square-root of the absolute value of sectional curvature of a surface, and observe the values to see if both of them can alternately be used in the process of understanding or measuring system robustness. In this process we have worked on two different examples and taken readings for many points to find if there is any consistency in the two curvatures.
70

Virasoro branes and asymmetric shift orbifolds /

Tseng, Li-Sheng. January 2003 (has links)
Thesis (Ph. D.)--University of Chicago, Dept. of Physics, Dec. 2003. / Includes bibliographical references. Also available on the Internet.

Page generated in 0.0168 seconds