71 |
Um modelo neural de aprimoramento progressivo para redução de dimensionalidade / A Progressive Enhancement Neural Model for dimensionality reductionCamargo, Sandro da Silva January 2010 (has links)
Nas últimas décadas, avanços em tecnologias de geração, coleta e armazenamento de dados têm contribuído para aumentar o tamanho dos bancos de dados nas diversas áreas de conhecimento humano. Este aumento verifica-se não somente em relação à quantidade de amostras de dados, mas principalmente em relação à quantidade de características descrevendo cada amostra. A adição de características causa acréscimo de dimensões no espaço matemático, conduzindo ao crescimento exponencial do hipervolume dos dados, problema denominado “maldição da dimensionalidade”. A maldição da dimensionalidade tem sido um problema rotineiro para cientistas que, a fim de compreender e explicar determinados fenômenos, têm se deparado com a necessidade de encontrar estruturas significativas ocultas, de baixa dimensão, dentro de dados de alta dimensão. Este processo denomina-se redução de dimensionalidade dos dados (RDD). Do ponto de vista computacional, a conseqüência natural da RDD é uma diminuição do espaço de busca de hipóteses, melhorando o desempenho e simplificando os resultados da modelagem de conhecimento em sistemas autônomos de aprendizado. Dentre as técnicas utilizadas atualmente em sistemas autônomos de aprendizado, as redes neurais artificiais (RNAs) têm se tornado particularmente atrativas para modelagem de sistemas complexos, principalmente quando a modelagem é difícil ou quando a dinâmica do sistema não permite o controle on-line. Apesar de serem uma poderosa técnica, as RNAs têm seu desempenho afetado pela maldição da dimensionalidade. Quando a dimensão do espaço de entradas é alta, as RNAs podem utilizar boa parte de seus recursos para representar porções irrelevantes do espaço de busca, dificultando o aprendizado. Embora as RNAs, assim como outras técnicas de aprendizado de máquina, consigam identificar características mais informativas para um processo de modelagem, a utilização de técnicas de RDD frequentemente melhora os resultados do processo de aprendizado. Este trabalho propõe um wrapper que implementa um modelo neural de aprimoramento progressivo para RDD em sistemas autônomos de aprendizado supervisionado visando otimizar o processo de modelagem. Para validar o modelo neural de aprimoramento progressivo, foram realizados experimentos com bancos de dados privados e de repositórios públicos de diferentes domínios de conhecimento. A capacidade de generalização dos modelos criados é avaliada por meio de técnicas de validação cruzada. Os resultados obtidos demonstram que o modelo neural de aprimoramento progressivo consegue identificar características mais informativas, permitindo a RDD, e tornando possível criar modelos mais simples e mais precisos. A implementação da abordagem e os experimentos foram realizados no ambiente Matlab, utilizando o toolbox de RNAs. / In recent decades, advances on data generation, collection and storing technologies have contributed to increase databases size in different knowledge areas. This increase is seen not only regarding samples amount, but mainly regarding dimensionality, i.e. the amount of features describing each sample. Features adding causes dimension increasing in mathematical space, leading to an exponential growth of data hypervolume. This problem is called “the curse of dimensionality”. The curse of dimensionality has been a routine problem for scientists, that in order to understand and explain some phenomena, have faced with the demand to find meaningful low dimensional structures hidden in high dimensional search spaces. This process is called data dimensionality reduction (DDR). From computational viewpoint, DDR natural consequence is a reduction of hypothesis search space, improving performance and simplifying the knowledge modeling results in autonomous learning systems. Among currently used techniques in autonomous learning systems, artificial neural networks (ANNs) have becoming particularly attractive to model complex systems, when modeling is hard or when system dynamics does not allow on-line control. Despite ANN being a powerful tool, their performance is affected by the curse of dimensionality. When input space dimension is high, ANNs can use a significant part of their resources to represent irrelevant parts of input space making learning process harder. Although ANNs, and other machine learning techniques, can identify more informative features for a modeling process, DDR techniques often improve learning results. This thesis proposes a wrapper which implements a Progressive Enhancement Neural Model to DDR in supervised autonomous learning systems in order to optimize the modeling process. To validate the proposed approach, experiments were performed with private and public databases, from different knowledge domains. The generalization ability of developed models is evaluated by means of cross validation techniques. Obtained results demonstrate that the proposed approach can identify more informative features, allowing DDR, and becoming possible to create simpler and more accurate models. The implementation of the proposed approach and related experiments were performed in Matlab Environment, using ANNs toolbox.
|
72 |
Deep Learning based Classification of FDG-PET Data for Alzheimer's DiseaseJanuary 2017 (has links)
abstract: Alzheimer’s Disease (AD), a neurodegenerative disease is a progressive disease that affects the brain gradually with time and worsens. Reliable and early diagnosis of AD and its prodromal stages (i.e. Mild Cognitive Impairment(MCI)) is essential. Fluorodeoxyglucose (FDG) positron emission tomography (PET) measures the decline in the regional cerebral metabolic rate for glucose, offering a reliable metabolic biomarker even on presymptomatic AD patients. PET scans provide functional information that is unique and unavailable using other types of imaging. The computational efficacy of FDG-PET data alone, for the classification of various Alzheimer’s Diagnostic categories (AD, MCI (LMCI, EMCI), Control) has not been studied. This serves as motivation to correctly classify the various diagnostic categories using FDG-PET data. Deep learning has recently been applied to the analysis of structural and functional brain imaging data. This thesis is an introduction to a deep learning based classification technique using neural networks with dimensionality reduction techniques to classify the different stages of AD based on FDG-PET image analysis.
This thesis develops a classification method to investigate the performance of FDG-PET as an effective biomarker for Alzheimer's clinical group classification. This involves dimensionality reduction using Probabilistic Principal Component Analysis on max-pooled data and mean-pooled data, followed by a Multilayer Feed Forward Neural Network which performs binary classification. Max pooled features result into better classification performance compared to results on mean pooled features. Additionally, experiments are done to investigate if the addition of important demographic features such as Functional Activities Questionnaire(FAQ), gene information helps improve performance. Classification results indicate that our designed classifiers achieve competitive results, and better with the additional of demographic features. / Dissertation/Thesis / Masters Thesis Computer Science 2017
|
73 |
Evaluating immersive approaches to multidimensional information visualization / Avaliando abordagens imersivas para visualização de informações multidimensionaisWagner Filho, Jorge Alberto January 2018 (has links)
O uso de novos recursos de display e interação para suportar a visualização imersiva de dados e incrementar o raciocínio analítico é uma tendência de pesquisa em Visualização de Informações. Neste trabalho, avaliamos o uso de ambientes baseados em HMD para a exploração de dados multidimensionais, representados em scatterplots 3D como resultado de redução de dimensionalidade. Nós apresentamos uma nova modelagem para o problema de avaliação neste contexto, levando em conta os dois fatores cuja interação determina o impacto no desempenho total nas tarefas: a diferença nos erros introduzidos ao se realizar redução de dimensionalidade para 2D ou 3D, e a diferença nos erros de percepção humana sob diferentes condições de visualização. Este framework em duas etapas oferece uma abordagem simples para estimar os benefícios de se utilizar um setup 3D imersivo para um dado conjunto de dados. Como caso de uso, os erros de redução de dimensionalidade para uma série de conjuntos de dados de votações na Câmara dos Deputados, ao se utilizar duas ou três dimensões, são avaliados por meio de uma abordagem empírica baseada em tarefas. O erro de percepção e o desempenho geral de tarefa, por sua vez, são avaliados através de estudos controlados comparativos com usuários. Comparando-se visualizações baseadas em desktop (2D e 3D) e em HMD (3D), resultados iniciais indicaram que os erros de percepção foram baixos e similares em todas abordagens, resultando em benefícios para o desempenho geral em ambas técnicas 3D A condição imersiva, no entanto, demonstrou requerer menor esforço para encontrar as informações e menos navegação, além de prover percepções subjetivas de precisão e engajamento muito maiores. Todavia, o uso de navegação por voo livre resultou em tempos ineficientes e frequente desconforto nos usuários. Em um segundo momento, implementamos e avaliamos uma abordagem alternativa de exploração de dados, onde o usuário permanece sentado e mudanças no ponto de vista só são possíveis por meio de movimentos físicos. Toda a manipulação é realizada diretamente por gestos aéreos naturais, com os dados sendo renderizados ao alcance dos braços. A reprodução virtual de uma cópia exata da mesa de trabalho do analista visa aumentar a imersão e possibilitar a interação tangível com controles e informações bidimensionais associadas. Um segundo estudo com usuários foi conduzido em comparação a uma versão equivalente baseada em desktop, explorando um conjunto de 9 tarefas representativas de percepção e interação, baseadas em literatura prévia. Nós demonstramos que o nosso protótipo, chamado VirtualDesk, apresentou resultados excelentes em relação a conforto e imersão, e desempenho equivalente ou superior em todas tarefas analíticas, enquanto adicionando pouco ou nenhum tempo extra e ampliando a exploração dos dados. / The use of novel displays and interaction resources to support immersive data visualization and improve the analytical reasoning is a research trend in Information Visualization. In this work, we evaluate the use of HMD-based environments for the exploration of multidimensional data, represented in 3D scatterplots as a result of dimensionality reduction. We present a new modelling for the evaluation problem in such a context, accounting for the two factors whose interplay determine the impact on the overall task performance: the difference in errors introduced by performing dimensionality reduction to 2D or 3D, and the difference in human perception errors under different visualization conditions. This two-step framework offers a simple approach to estimate the benefits of using an immersive 3D setup for a particular dataset. As use case, the dimensionality reduction errors for a series of roll calls datasets when using two or three dimensions are evaluated through an empirical task-based approach. The perception error and overall task performance are assessed through controlled comparative user studies. When comparing desktop-based (2D and 3D) with an HMD-based (3D) visualization, initial results indicated that perception errors were low and similar in all approaches, resulting in overall performance benefits in both 3D techniques. The immersive condition, however, was found to require less effort to find information and less navigation, besides providing much larger subjective perception of accuracy and engagement. Nonetheless, the use of flying navigation resulted in inefficient times and frequent user discomfort In a second moment, we implemented and evaluated an alternative data exploration approach where the user remains seated and viewpoint change is only realisable through physical movements. All manipulation is done directly by natural mid-air gestures, with the data being rendered at arm’s reach. The virtual reproduction of an exact copy of the analyst’s desk aims to increase immersion and enable tangible interaction with controls and two dimensional associated information. A second user study was carried out comparing this scenario to a desktop-based equivalent, exploring a set of 9 representative perception and interaction tasks based on previous literature. We demonstrate that our prototype setup, named VirtualDesk, presents excellent results regarding user comfort and immersion, and performs equally or better in all analytical tasks, while adding minimal or no time overhead and amplifying data exploration.
|
74 |
Redução de dimensionalidade aplicada à diarização de locutor / Dimensionality reduction applied to speaker diarizationSilva, Sérgio Montazzolli January 2013 (has links)
Atualmente existe uma grande quantidade de dados multimídia sendo geradas todos os dias. Estes dados são oriundos de diversas fontes, como transmissões de rádio ou televisão, gravações de palestras, encontros, conversas telefônicas, vídeos e fotos capturados por celular, entre outros. Com isto, nos últimos anos o interesse pela transcrição de dados multimídia tem crescido, onde, no processamento de voz, podemos destacar as áreas de Reconhecimento de Locutor, Reconhecimento de Fala, Diarização de Locutor e Rastreamento de Locutores. O desenvolvimento destas áreas vem sendo impulsionado e direcionado pelo NIST, que periodicamente realiza avaliações sobre o estado-da-arte. Desde 2000, a tarefa de Diarização de Locutor tem se destacado como uma das principáis frentes de pesquisa em transcrição de dados de voz, tendo sido avaliada pelo NIST por diversas vezes na última década. O objetivo desta tarefa é encontrar o número de locutores presentes em um áudio, e rotular seus respectivos trechos de fala, sem que nenhuma informação tenha sido previamente fornecida. Em outras palavras, costuma-se dizer que o objetivo é responder a questão "Quem falou e quando?". Um dos grandes problemas nesta área é se conseguir obter um bom modelo para cada locutor presente no áudio, dada a pouca quantidade de informações e a alta dimensionalidade dos dados. Neste trabalho, além da criação de um Sistema de Diarização de Locutor, iremos tratar este problema mediante à redução de dimensionalidade através de análises estatísticas. Usaremos a Análise de Componentes Principáis, a Análise de Discriminantes Lineares e a recém apresentada Análise de Semi-Discriminantes Lineares. Esta última utiliza um método de inicialização estático, iremos propor o uso de um método dinâmico, através da detecção de pontos de troca de locutor. Também investigaremos o comportamento destas análises sob o uso simultâneo de múltiplas parametrizações de curto prazo do sinal acústico. Os resultados obtidos mostram que é possível preservar - ou até melhorar - o desempenho do sistema, mesmo reduzindo substâncialmente o número de dimensões. Isto torna mais rápida a execução de algoritmos de Aprendizagem de Máquina e reduz a quantidade de memória necessária para armezenar os dados. / Currently, there is a large amount of multimedia data being generated everyday. These data come from various sources, such as radio or television, recordings of lectures and meetings, telephone conversations, videos and photos captured by mobile phone, among others. Because of this, interest in automatic multimedia data transcription has grown in recent years, where, for voice processing, we can highlight the areas of Speaker Recognition, Speech Recognition, Speaker Diarization and Speaker Tracking. The development of such areas is being conducted by NIST, which periodically promotes state-of-the-art evaluations. Since 2000, the task of Speaker Diarization has emerged as one of the main research fields in voice data transcription, having been evaluated by NIST several times in the last decade. The objective of this task is to find the number of speakers in an audio recording, and properly label their speech segments without the use of any training information. In other words , it is said that the goal of Speaker Diarization is to answer the question "Who spoke when?". A major problem in this area is to obtain a good speaker model from the audio, given the limited amount of information available and the high dimensionality of the data. In the current work, we will describe how our Speaker Diarization System was built, and we will address the problem mentioned by lowering the dimensionality of the data through statistical analysis. We will use the Principal Component Analysis, the Linear Discriminant Analysis and the newly presented Fisher Linear Semi-Discriminant Analysis. The latter uses a static method for initialization, and here we propose the use of a dynamic method by the use of a speaker change points detection algorithm. We also investigate the behavior of these data analysis techniques under the simultaneous use of multiple short term features. Our results show that it is possible to maintain - and even improve - the system performance, by substantially reducing the number of dimensions. As a consequence, the execution of Machine Learning algorithms is accelerated while reducing the amount of memory required to store the data.
|
75 |
Um modelo neural de aprimoramento progressivo para redução de dimensionalidade / A Progressive Enhancement Neural Model for dimensionality reductionCamargo, Sandro da Silva January 2010 (has links)
Nas últimas décadas, avanços em tecnologias de geração, coleta e armazenamento de dados têm contribuído para aumentar o tamanho dos bancos de dados nas diversas áreas de conhecimento humano. Este aumento verifica-se não somente em relação à quantidade de amostras de dados, mas principalmente em relação à quantidade de características descrevendo cada amostra. A adição de características causa acréscimo de dimensões no espaço matemático, conduzindo ao crescimento exponencial do hipervolume dos dados, problema denominado “maldição da dimensionalidade”. A maldição da dimensionalidade tem sido um problema rotineiro para cientistas que, a fim de compreender e explicar determinados fenômenos, têm se deparado com a necessidade de encontrar estruturas significativas ocultas, de baixa dimensão, dentro de dados de alta dimensão. Este processo denomina-se redução de dimensionalidade dos dados (RDD). Do ponto de vista computacional, a conseqüência natural da RDD é uma diminuição do espaço de busca de hipóteses, melhorando o desempenho e simplificando os resultados da modelagem de conhecimento em sistemas autônomos de aprendizado. Dentre as técnicas utilizadas atualmente em sistemas autônomos de aprendizado, as redes neurais artificiais (RNAs) têm se tornado particularmente atrativas para modelagem de sistemas complexos, principalmente quando a modelagem é difícil ou quando a dinâmica do sistema não permite o controle on-line. Apesar de serem uma poderosa técnica, as RNAs têm seu desempenho afetado pela maldição da dimensionalidade. Quando a dimensão do espaço de entradas é alta, as RNAs podem utilizar boa parte de seus recursos para representar porções irrelevantes do espaço de busca, dificultando o aprendizado. Embora as RNAs, assim como outras técnicas de aprendizado de máquina, consigam identificar características mais informativas para um processo de modelagem, a utilização de técnicas de RDD frequentemente melhora os resultados do processo de aprendizado. Este trabalho propõe um wrapper que implementa um modelo neural de aprimoramento progressivo para RDD em sistemas autônomos de aprendizado supervisionado visando otimizar o processo de modelagem. Para validar o modelo neural de aprimoramento progressivo, foram realizados experimentos com bancos de dados privados e de repositórios públicos de diferentes domínios de conhecimento. A capacidade de generalização dos modelos criados é avaliada por meio de técnicas de validação cruzada. Os resultados obtidos demonstram que o modelo neural de aprimoramento progressivo consegue identificar características mais informativas, permitindo a RDD, e tornando possível criar modelos mais simples e mais precisos. A implementação da abordagem e os experimentos foram realizados no ambiente Matlab, utilizando o toolbox de RNAs. / In recent decades, advances on data generation, collection and storing technologies have contributed to increase databases size in different knowledge areas. This increase is seen not only regarding samples amount, but mainly regarding dimensionality, i.e. the amount of features describing each sample. Features adding causes dimension increasing in mathematical space, leading to an exponential growth of data hypervolume. This problem is called “the curse of dimensionality”. The curse of dimensionality has been a routine problem for scientists, that in order to understand and explain some phenomena, have faced with the demand to find meaningful low dimensional structures hidden in high dimensional search spaces. This process is called data dimensionality reduction (DDR). From computational viewpoint, DDR natural consequence is a reduction of hypothesis search space, improving performance and simplifying the knowledge modeling results in autonomous learning systems. Among currently used techniques in autonomous learning systems, artificial neural networks (ANNs) have becoming particularly attractive to model complex systems, when modeling is hard or when system dynamics does not allow on-line control. Despite ANN being a powerful tool, their performance is affected by the curse of dimensionality. When input space dimension is high, ANNs can use a significant part of their resources to represent irrelevant parts of input space making learning process harder. Although ANNs, and other machine learning techniques, can identify more informative features for a modeling process, DDR techniques often improve learning results. This thesis proposes a wrapper which implements a Progressive Enhancement Neural Model to DDR in supervised autonomous learning systems in order to optimize the modeling process. To validate the proposed approach, experiments were performed with private and public databases, from different knowledge domains. The generalization ability of developed models is evaluated by means of cross validation techniques. Obtained results demonstrate that the proposed approach can identify more informative features, allowing DDR, and becoming possible to create simpler and more accurate models. The implementation of the proposed approach and related experiments were performed in Matlab Environment, using ANNs toolbox.
|
76 |
Redução de dimensionalidade aplicada à diarização de locutor / Dimensionality reduction applied to speaker diarizationSilva, Sérgio Montazzolli January 2013 (has links)
Atualmente existe uma grande quantidade de dados multimídia sendo geradas todos os dias. Estes dados são oriundos de diversas fontes, como transmissões de rádio ou televisão, gravações de palestras, encontros, conversas telefônicas, vídeos e fotos capturados por celular, entre outros. Com isto, nos últimos anos o interesse pela transcrição de dados multimídia tem crescido, onde, no processamento de voz, podemos destacar as áreas de Reconhecimento de Locutor, Reconhecimento de Fala, Diarização de Locutor e Rastreamento de Locutores. O desenvolvimento destas áreas vem sendo impulsionado e direcionado pelo NIST, que periodicamente realiza avaliações sobre o estado-da-arte. Desde 2000, a tarefa de Diarização de Locutor tem se destacado como uma das principáis frentes de pesquisa em transcrição de dados de voz, tendo sido avaliada pelo NIST por diversas vezes na última década. O objetivo desta tarefa é encontrar o número de locutores presentes em um áudio, e rotular seus respectivos trechos de fala, sem que nenhuma informação tenha sido previamente fornecida. Em outras palavras, costuma-se dizer que o objetivo é responder a questão "Quem falou e quando?". Um dos grandes problemas nesta área é se conseguir obter um bom modelo para cada locutor presente no áudio, dada a pouca quantidade de informações e a alta dimensionalidade dos dados. Neste trabalho, além da criação de um Sistema de Diarização de Locutor, iremos tratar este problema mediante à redução de dimensionalidade através de análises estatísticas. Usaremos a Análise de Componentes Principáis, a Análise de Discriminantes Lineares e a recém apresentada Análise de Semi-Discriminantes Lineares. Esta última utiliza um método de inicialização estático, iremos propor o uso de um método dinâmico, através da detecção de pontos de troca de locutor. Também investigaremos o comportamento destas análises sob o uso simultâneo de múltiplas parametrizações de curto prazo do sinal acústico. Os resultados obtidos mostram que é possível preservar - ou até melhorar - o desempenho do sistema, mesmo reduzindo substâncialmente o número de dimensões. Isto torna mais rápida a execução de algoritmos de Aprendizagem de Máquina e reduz a quantidade de memória necessária para armezenar os dados. / Currently, there is a large amount of multimedia data being generated everyday. These data come from various sources, such as radio or television, recordings of lectures and meetings, telephone conversations, videos and photos captured by mobile phone, among others. Because of this, interest in automatic multimedia data transcription has grown in recent years, where, for voice processing, we can highlight the areas of Speaker Recognition, Speech Recognition, Speaker Diarization and Speaker Tracking. The development of such areas is being conducted by NIST, which periodically promotes state-of-the-art evaluations. Since 2000, the task of Speaker Diarization has emerged as one of the main research fields in voice data transcription, having been evaluated by NIST several times in the last decade. The objective of this task is to find the number of speakers in an audio recording, and properly label their speech segments without the use of any training information. In other words , it is said that the goal of Speaker Diarization is to answer the question "Who spoke when?". A major problem in this area is to obtain a good speaker model from the audio, given the limited amount of information available and the high dimensionality of the data. In the current work, we will describe how our Speaker Diarization System was built, and we will address the problem mentioned by lowering the dimensionality of the data through statistical analysis. We will use the Principal Component Analysis, the Linear Discriminant Analysis and the newly presented Fisher Linear Semi-Discriminant Analysis. The latter uses a static method for initialization, and here we propose the use of a dynamic method by the use of a speaker change points detection algorithm. We also investigate the behavior of these data analysis techniques under the simultaneous use of multiple short term features. Our results show that it is possible to maintain - and even improve - the system performance, by substantially reducing the number of dimensions. As a consequence, the execution of Machine Learning algorithms is accelerated while reducing the amount of memory required to store the data.
|
77 |
Algoritmos de seleção de características personalizados por classe para categorização de textoFRAGOSO, Rogério César Peixoto 26 August 2016 (has links)
Submitted by Rafael Santana (rafael.silvasantana@ufpe.br) on 2017-08-31T19:39:48Z
No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Rogerio_Fragoso.pdf: 1117500 bytes, checksum: 3e7915ee5c34322de3a8358d59679961 (MD5) / Made available in DSpace on 2017-08-31T19:39:48Z (GMT). No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Rogerio_Fragoso.pdf: 1117500 bytes, checksum: 3e7915ee5c34322de3a8358d59679961 (MD5)
Previous issue date: 2016-08-26 / A categorização de textos é uma importante ferramenta para organização e recuperação de
informações em documentos digitais. Uma abordagem comum é representar cada palavra
como uma característica. Entretanto, a maior parte das características em um documento
textual são irrelevantes para sua categorização. Assim, a redução de dimensionalidade
é um passo fundamental para melhorar o desempenho de classificação e reduzir o alto
custo computacional inerente a problemas de alta dimensionalidade, como é o caso da
categorização de textos. A estratégia mais utilizada para redução de dimensionalidade
em categorização de textos passa por métodos de seleção de características baseados em
filtragem. Métodos deste tipo exigem um esforço para configurar o tamanho do vetor final
de características. Este trabalho propõe métodos de filtragem com o intuito melhorar o
desempenho de classificação em comparação com os métodos atuais e de tornar possível a
automatização da escolha do tamanho do vetor final de características. O primeiro método
proposto, chamado Category-dependent Maximum f Features per Document-Reduced
(cMFDR), define um limiar para cada categoria para determinar quais documentos serão
considerados no processo de seleção de características. O método utiliza um parâmetro
para definir quantas características são selecionadas por documento. Esta abordagem
apresenta algumas vantagens, como a simplificação do processo de escolha do subconjunto
mais efetivo através de uma drástica redução da quantidade de possíveis configurações.
O segundo método proposto, Automatic Feature Subsets Analyzer (AFSA), introduz um
procedimento para determinar, de maneira guiada por dados, o melhor subconjunto de
características dentre um número de subconjuntos gerados. Este método utiliza o mesmo
parâmetro usado por cMFDR para definir a quantidade de características no vetor final.
Isto permite que a busca pelo melhor subconjunto tenha um baixo custo computacional. O
desempenho dos métodos propostos foram avaliados nas bases de dados WebKB, Reuters,
20 Newsgroup e TDT2, utilizando as funções de avaliação de características Bi-Normal
Separation, Class Discriminating Measure e Chi-Squared Statistics. Os resultados dos
experimentos demonstraram uma maior efetividade dos métodos propostos em relação aos
métodos do estado da arte. / Text categorization is an important technic to organize and retrieve information from digital
documents. A common approach is to represent each word as a feature. However most of
the features in a textual document is irrelevant to its categorization. Thus, dimensionality
reduction is a fundamental step to improve classification performance and diminish the
high computational cost inherent to high dimensional problems, such as text categorization.
The most commonly adopted strategy for dimensionality reduction in text categorization
undergoes feature selection methods based on filtering. This kind of method requires an
effort to configure the size of the final feature vector. This work proposes filtering methods
aiming to improve categorization performence comparing to state-of-the-art methods
and to provide a possibility of automitic determination of the size of the final feature
set. The first proposed method, namely Category-dependent Maximum f Features per
Document-Reduced (cMFDR), sets a threshold for each category that determines which
documents are considered in feature selection process. The method uses a parameter to
arbitrate how many features are selected per document. This approach presents some
advantages, such as simplifying the process of choosing the most effective subset through
a strong reduction of the number of possible configurations. The second proposed method,
Automatic Feature Subsets Analyzer (AFSA), presents a procedure to determine, in a data
driven way, the most effective subset among a number of generated subsets. This method
uses the same parameter used by cMFDR to define the size of the final feature vector. This
fact leads to lower computational costs to find the most effective set. The performance of
the proposed methods was assessed in WebKB, Reuters, 20 Newsgroup and TDT2 datasets,
using Bi-Normal Separation, Class Discriminating Measure and Chi-Squared Statistics
feature evaluations functions. The experimental results demonstrates that the proposed
methods are more effective than state-of-art methods.
|
78 |
Learning and recognizing texture characteristics using local binary patternsTurtinen, M. (Markus) 05 June 2007 (has links)
Abstract
Texture plays an important role in numerous computer vision applications. Many methods for describing and analyzing of textured surfaces have been proposed. Variations in the appearance of texture caused by changing illumination and imaging conditions, for example, set high requirements on different analysis methods. In addition, real-world applications tend to produce a great deal of complex texture data to be processed that should be handled effectively in order to be exploited.
A local binary pattern (LBP) operator offers an efficient way of analyzing textures. It has a simple theory and combines properties of structural and statistical texture analysis methods. LBP is invariant against monotonic gray-scale variations and has also extensions to rotation invariant texture analysis.
Analysis of real-world texture data is typically very laborious and time consuming. Often there is no ground truth or other prior knowledge of the data available, and important properties of the textures must be learned from the images. This is a very challenging task in texture analysis.
In this thesis, methods for learning and recognizing texture categories using local binary pattern features are proposed. Unsupervised clustering and dimensionality reduction methods combined to visualization provide useful tools for analyzing texture data. Uncovering the data structures is done in an unsupervised fashion, based only on texture features, and no prior knowledge of the data, for example texture classes, is required. In this thesis, non-linear dimensionality reduction, data clustering and visualization are used for building a labeled training set for a classifier, and for studying the performance of the features.
The thesis also proposes a multi-class approach to learning and labeling part based texture appearance models to be used in scene texture recognition using only little human interaction. Also a semiautomatic approach to learning texture appearance models for view based texture classification is proposed.
The goal of texture characterization is often to classify textures into different categories. In this thesis, two texture classification systems suitable for different applications are proposed. First, a discriminative classifier that combines local and contextual texture information of the image in scene recognition is proposed. Secondly, a real-time capable texture classifier with a self-intuitive user interface to be used in industrial texture classification is proposed.
Two challenging real-world texture analysis applications are used to study the performance and usefulness of the proposed methods. The first one is visual paper analysis which aims to characterize paper quality based on texture properties. The second application is outdoor scene image analysis where texture information is used to recognize different regions in the scenes.
|
79 |
Técnicas computacionais de apoio à classificação visual de imagens e outros dados / Computational techniques to support classification of images and other dataJosé Gustavo de Souza Paiva 20 December 2012 (has links)
O processo automático de classificação de dados em geral, e em particular de classificação de imagens, é uma tarefa computacionalmente intensiva e variável em termos de precisão, sendo consideravelmente dependente da configuração do classificador e da representação dos dados utilizada. Muitos dos fatores que afetam uma adequada aplicação dos métodos de classificação ou categorização para imagens apontam para a necessidade de uma maior interferência do usuário no processo. Para isso são necessárias mais ferramentas de apoio às várias etapas do processo de classificação, tais como, mas não limitadas, a extração de características, a parametrização dos algoritmos de classificação e a escolha de instâncias de treinamento adequadas. Este doutorado apresenta uma metodologia para Classificação Visual de Imagens, baseada na inserção do usuário no processo de classificação automática através do uso de técnicas de visualização. A ideia é permitir que o usuário participe de todos os passos da classificação de determinada coleção, realizando ajustes e consequentemente melhorando os resultados de acordo com suas necessidades. Um estudo de diversas técnicas de visualização candidatas para a tarefa é apresentado, com destaque para as árvores de similaridade, sendo apresentadas melhorias do algoritmo de construção em termos de escalabilidade visual e de tempo de processamento. Adicionalmente, uma metodologia de redução de dimensionalidade visual semi-supervisionada é apresentada para apoiar, pela utilização de ferramentas visuais, a criação de espaços reduzidos que melhorem as características de segregação do conjunto original de características. A principal contribuição do trabalho é um sistema de classificação visual incremental que incorpora todos os passos da metodologia proposta, oferecendo ferramentas interativas e visuais que permitem a interferência do usuário na classificação de coleções incrementais com configuração de classes variável. Isso possibilita a utilização do conhecimento do ser humano na construção de classificadores que se adequem a diferentes necessidades dos usuários em diferentes cenários, produzindo resultados satisfatórios para coleções de dados diversas. O foco desta tese é em categorização de coleções de imagens, com exemplos também para conjuntos de dados textuais / Automatic data classification in general, and image classification in particular, are computationally intensive tasks with variable results concerning precision, being considerably dependent on the classifier´s configuration and data representation. Many of the factors that affect an adequate application of classification or categorization methods for images point to the need for more user interference in the process. To accomplish that, it is necessary to develop a larger set of supporting tools for the various stages of the classification set up, such as, but not limited to, feature extraction, parametrization of the classification algorithm and selection of adequate training instances. This doctoral Thesis presents a Visual Image Classification methodology based on the user´s insertion in the classification process through the use of visualization techniques. The idea is to allow the user to participate in all classification steps, adjusting several stages and consequently improving the results according to his or her needs. A study on several candidate visualization techniques is presented, with emphasis on similarity trees, and improvements of the tree construction algorithm, both in visual and time scalability, are shown. Additionally, a visual semi-supervised dimensionality reduction methodology was developed to support, through the use of visual tools, the creation of reduced spaces that improve segregation of the original feature space. The main contribution of this work is an incremental visual classification system incorporating all the steps of the proposed methodology, and providing interactive and visual tools that permit user controlled classification of an incremental collection with evolving class configuration. It allows the use of the human knowledge on the construction of classifiers that adapt to different user needs in different scenarios, producing satisfactory results for several data collections. The focus of this Thesis is image data sets, with examples also in classification of textual collections
|
80 |
Extração de tópicos baseado em agrupamento de regras de associação / Topic extraction based on association rule clusteringFabiano Fernandes dos Santos 29 May 2015 (has links)
Uma representação estruturada dos documentos em um formato apropriado para a obtenção automática de conhecimento, sem que haja perda de informações relevantes em relação ao formato originalmente não-estruturado, é um dos passos mais importantes da mineração de textos, pois a qualidade dos resultados obtidos com as abordagens automáticas para obtenção de conhecimento de textos estão fortemente relacionados à qualidade dos atributos utilizados para representar a coleção de documentos. O Modelo de Espaço de Vetores (MEV) é um modelo tradicional para obter uma representação estruturada dos documentos. Neste modelo, cada documento é representado por um vetor de pesos correspondentes aos atributos do texto. O modelo bag-of-words é a abordagem de MEV mais utilizada devido a sua simplicidade e aplicabilidade. Entretanto, o modelo bag-of-words não trata a dependência entre termos e possui alta dimensionalidade. Diversos modelos para representação dos documentos foram propostos na literatura visando capturar a informação de relação entre termos, destacando-se os modelos baseados em frases ou termos compostos, o Modelo de Espaço de Vetores Generalizado (MEVG) e suas extensões, modelos de tópicos não-probabilísticos, como o Latent Semantic Analysis (LSA) ou o Non-negative Matrix Factorization (NMF), e modelos de tópicos probabilísticos, como o Latent Dirichlet Allocation (LDA) e suas extensões. A representação baseada em modelos de tópicos é uma das abordagens mais interessantes uma vez que elas fornece uma estrutura que descreve a coleção de documentos em uma forma que revela sua estrutura interna e as suas inter-relações. As abordagens de extração de tópicos também fornecem uma estratégia de redução da dimensionalidade visando a construção de novas dimensões que representam os principais tópicos ou assuntos identificados na coleção de documentos. Entretanto, a extração é eficiente de informações sobre as relações entre os termos para construção da representação de documentos ainda é um grande desafio de pesquisa. Os modelos para representação de documentos que exploram a correlação entre termos normalmente enfrentam um grande desafio para manter um bom equilíbrio entre (i) a quantidade de dimensões obtidas, (ii) o esforço computacional e (iii) a interpretabilidade das novas dimensões obtidas. Assim,é proposto neste trabalho o modelo para representação de documentos Latent Association Rule Cluster based Model (LARCM). Este é um modelo de extração de tópicos não-probabilístico que explora o agrupamento de regras de associação para construir uma representação da coleção de documentos com dimensionalidade reduzida tal que as novas dimensões são extraídas a partir das informações sobre as relações entre os termos. No modelo proposto, as regras de associação são extraídas para cada documento para obter termos correlacionados que formam expressões multi-palavras. Essas relações entre os termos formam o contexto local da relação entre termos. Em seguida, aplica-se um processo de agrupamento em todas as regras de associação para formar o contexto geral das relações entre os termos, e cada grupo de regras de associação obtido formará um tópico, ou seja, uma dimensão da representação. Também é proposto neste trabalho uma metodologia de avaliação que permite selecionar modelos que maximizam tanto os resultados na tarefa de classificação de textos quanto os resultados de interpretabilidade dos tópicos obtidos. O modelo LARCM foi comparado com o modelo LDA tradicional e o modelo LDA utilizando uma representação que inclui termos compostos (bag-of-related-words). Os resultados dos experimentos indicam que o modelo LARCM produz uma representação para os documentos que contribui significativamente para a melhora dos resultados na tarefa de classificação de textos, mantendo também uma boa interpretabilidade dos tópicos obtidos. O modelo LARCM também apresentou ótimo desempenho quando utilizado para extração de informação de contexto para aplicação em sistemas de recomendação sensíveis ao contexto. / A structured representation of documents in an appropriate format for the automatic knowledge extraction without loss of relevant information is one of the most important steps of text mining, since the quality of the results obtained with automatic approaches for the text knowledge extraction is strongly related to the quality of the selected attributes to represent the collection of documents. The Vector Space model (VSM) is a traditional structured representation of documents. In this model, each document is represented as a vector of weights that corresponds to the features of the document. The bag-of-words model is the most popular VSM approach because of its simplicity and general applicability. However, the bag-of-words model does not include dependencies of the terms and has a high dimensionality. Several models for document representation have been proposed in the literature in order to capture the dependence among the terms, especially models based on phrases or compound terms, the Generalized Vector Space Model (GVSM) and their extensions, non-probabilistic topic models as Latent Semantic Analysis (LSA) or Non-negative Matrix Factorization (NMF) and still probabilistic topic models as the Latent Dirichlet Allocation (LDA) and their extensions. The topic model representation is one of the most interesting approaches since it provides a structure that describes the collection of documents in a way that reveals their internal structure and their interrelationships. Also, this approach provides a dimensionality reduction strategy aiming to built new dimensions that represent the main topics or ideas of the document collection. However, the efficient extraction of information about the relations of terms for document representation is still a major research challenge nowadays. The document representation models that explore correlated terms usually face a great challenge of keeping a good balance among the (i) number of extracted features, (ii) the computational performance and (iii) the interpretability of new features. In this way, we proposed the Latent Association Rule Cluster based Model (LARCM). The LARCM is a non-probabilistic topic model that explores association rule clustering to build a document representation with low dimensionality in a way that each dimension is composed by information about the relations among the terms. In the proposed approach, the association rules are built for each document to extract the correlated terms that will compose the multi-word expressions. These relations among the terms are the local context of relations. Then, a clustering process is applied for all association rules to discover the general context of the relations, and each obtained cluster is an extracted topic or a dimension of the new document representation. This work also proposes in this work an evaluation methodology to select topic models that maximize the results in the text classification task as much as the interpretability of the obtained topics. The LARCM model was compared against both the traditional LDA model and the LDA model using a document representation that includes multi-word expressions (bag-of-related-words). The experimental results indicate that LARCM provides an document representation that improves the results in the text classification task and even retains a good interpretability of the extract topics. The LARCM model also achieved great results as a method to extract contextual information for context-aware recommender systems.
|
Page generated in 0.0468 seconds