• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 24
  • 24
  • 24
  • 24
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fabricação e testes de células a combustível de óxido sólido a etanol direto usando camada catalítica / Solid oxide fuel cells fabrication and operation running direct ethanol using a catalytic layer

NOBREGA, SHAYENNE D. da 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:35:43Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:03:54Z (GMT). No. of bitstreams: 0 / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
2

Desempenho elétrico e distribuição dos produtos da célula a combustível com etanol direto utilizando Pt/C, PtSn/C(liga) e PtSnO2/C como eletrocatalisadores anódicos / Electrical performance and products distribution of direct ethanol fuel cell using Pt/C, PtSn/Csub(alloy) and PtSnOsub(2)/C as anodic electrocatalysts

ANTONIASSI, RODOLFO M. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:41:23Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:03:56Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
3

Fabricação e testes de células a combustível de óxido sólido a etanol direto usando camada catalítica / Solid oxide fuel cells fabrication and operation running direct ethanol using a catalytic layer

NOBREGA, SHAYENNE D. da 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:35:43Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:03:54Z (GMT). No. of bitstreams: 0 / Células a combustível de óxido sólido suportadas no eletrólito de zircônia estabilizada com ítria (YSZ) foram fabricadas usando a técnica do recobrimento por rotação (spin-coating) para deposição de catodos de manganita de lantânio dopada com estrôncio (LSM) e anodos compósitos de níquel e YSZ (Ni-YSZ). Parâmetros microestruturais dos eletrodos, tais como espessura, tamanho médio de partículas e temperatura de sinterização foram otimizados, visando reduzir a resistência de polarização da célula e melhorar o seu desempenho. Estes estudos serviram de base para a fabricação de células com camada catalítica para uso com etanol direto. Sobre o anodo Ni-YSZ da célula foi depositada uma camada catalítica de céria dopada com gadolínia (CGO) com 0,1% em peso de irídio (Ir-CGO). A camada catalítica visa reformar o etanol antes do seu contato com o anodo Ni-YSZ, evitando o depósito de carbono na superfície do Ni que inviabiliza o uso de combustíveis primários contendo carbono nestas células a combustível. Inicialmente, a célula a combustível foi testada com etanol e as melhores condições de operação foram determinadas. Em seguida, as células unitárias foram testadas com etanol sem adição de água por períodos de tempo de até 390 horas. As células a combustível a etanol direto com camada catalítica operam no modo de reforma interna gradual, apresentando boa estabilidade e densidades de corrente similares às obtidas na operação com hidrogênio. Após a operação das células a combustível a etanol direto, análises de microscopia eletrônica de varredura mostraram que não houve formação significativa de depósitos de carbono na superfície do Ni, indicando que a camada catalítica de Ir-CGO foi efetiva para operação com o etanol. Testes de células a combustível a etanol direto sem a camada catalítica revelaram uma rápida degradação nas horas iniciais de operação com formação de grandes quantidades de depósitos de carbono identificados visualmente. Considerando-se a operação estável com etanol a seco por tempos relativamente longos de operação, os resultados alcançados representam um avanço significativo e apontam para o desenvolvimento de células a combustível a etanol direto usando-se os componentes tradicionais com a adição de uma camada catalítica. / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
4

Desempenho elétrico e distribuição dos produtos da célula a combustível com etanol direto utilizando Pt/C, PtSn/C(liga) e PtSnO2/C como eletrocatalisadores anódicos / Electrical performance and products distribution of direct ethanol fuel cell using Pt/C, PtSn/Csub(alloy) and PtSnOsub(2)/C as anodic electrocatalysts

ANTONIASSI, RODOLFO M. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:41:23Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:03:56Z (GMT). No. of bitstreams: 0 / No presente trabalho, o desempenho elétrico dos eletrocatalisadores anódicos Pt/C, Pt3Sn/C(liga), Pt(SnO2)/C, Pt3(SnO2)/C e Pt9(SnO2)/C para as reações de eletro-oxidação de etanol, acetaldeído e ácido acético foi investigado. Testes em célula unitária mostraram que a adição de Sn seja na forma de liga Pt-Sn ou na forma de óxido (SnO2) coexistente com a platina metálica aumenta consideravelmente a resposta elétrica gerada pela célula. A melhora no desempenho elétrico dos catalisadores a base de PtSn é resultado da capacidade em oxidar o acetaldeído, majoritariamente produzido pelo Pt/C, em ácido acético. Pt3(SnO2)/C exibiu a melhor resposta elétrica tanto para o etanol quanto para acetaldeído como combustíveis, alcançando valores de densidade de potência máxima de 127 e 58 mW cm-2, respectivamente. Misturas entre os combustíveis mostraram que o acetaldeído é um composto que leva a uma rápida desativação dos catalisadores, enquanto que o ácido acético, embora não seja oxidado a CO2 nas condições de operação, não afeta o desempenho elétrico da célula. / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
5

In-Situ and Computational Studies of Ethanol Electrooxidation Reaction: Rational Catalyst Design Strategies

Monyoncho, Evans Angwenyi January 2017 (has links)
Fuel cells represent a promising technology for clean power generation because they convert chemical energy (fuel) into electrical energy with high efficiency and low-to-none emission of pollutants. Direct ethanol fuel cells (DEFCs) have several advantages compared to the most studied hydrogen and methanol fuel cells. First and foremost, ethanol is a non-toxic liquid, which lowers the investment of handling facilities because the current infrastructure for gasoline can be largely used. Second, ethanol can be conveniently produced from biomass, hence is carbon neutral which mitigates increasing atmospheric CO2. Last but not least, if completely oxidized to CO2, ethanol has a higher energy density than methanol since it can deliver 12 electrons per molecule. The almost exclusive oxidation to acetic acid overshadows the attractiveness of DEFCs considerably, as the energy density is divided by 3. The standard potential of acetic acid formation indicates that a reaction path including acetic acid, leads to inevitable potential losses of about 0.4 V (difference between ideal potential for CO2 and acetic acid "production"). The development of alkaline DEFCs had also been hampered by the lack of stable and efficient anion exchange membranes. Fortunately, this challenge has been well tackled in recent years,8,9 making the development of alkaline fuel cells (AFCs) which are of particular technological interest due to their simple designs and ability to operate at low temperatures (25-100 °C). In alkaline conditions, the kinetic of both the cathodic oxygen reduction and the anodic ethanol oxidation is facilitated. Furthermore, the expensive Pt catalyst can be replaced by the lower-cost and more active transition metals such as Pd. The main objectives of this project are: i) to provide detailed fundamental understanding of ethanol oxidation reaction on transition metal surfaces in alkaline media, ii) to propose the best rational catalyst design strategies to cleave the C–C bond during ethanol electrooxidation. To achieve these goals two methodologies are used, i.e., in-situ identification of ethanol electrooxidation products using polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) and mechanistic investigation using computational studies in the framework of density functional theory (DFT). The PM-IRRAS technique was advanced in this project to the level of distinguishing electrooxidation products at the surface of the nanoparticles (electrode) and in the bulk-phase of the electrolyte. This new PM-IRRAS utility makes it possible to detect molecules such as CO2 which desorbs from the catalyst surface as soon as they are formed. The DFT insights in this project, provides an explanation as to why it is difficult to break the C–C bond in ethanol and is used for screening the top candidate metals for further studies.
6

Investigação da reação de eletrooxidação de etanol por DEMS on-line: efeito de diferentes eletrocatalisadores e da temperatura / Investigation of the Ethanol Electro-oxidation Reaction by on-line DEMS: Effect of Different Electrocatalysts and of the Temperature

Silva, Wanderson Oliveira da 21 August 2017 (has links)
O desenvolvimento de células a combustível de etanol direto ou de reformadores eletroquímicos de etanol para a produção de hidrogênio, é limitado pela dificuldade da quebra da ligação C-C durante o curso da reação de oxidação de etanol (ROE), necessária para a completa eletroconversão ou alta eficiência para a formação de CO2. Diante desse contexto, este estudo teve como objetivo investigar os efeitos da composição dos eletrocatalisadores e da temperatura na eficiência faradaica da ROE para formação de CO2 e, assim, avançar no conhecimento dos fatores que governam a cinética de reação. Os eletrocatalisadores investigados foram formados por nanopartículas de Rh/C, Pt/C, Sn/Pt/C (1:3), Sn/Ir/C (1:3), Sn/(PtRh)/C (1:3) e Sn/(IrRh)/C (1:3), e sintetizadas pelo método de impregnação/decomposição térmica, seguido por tratamento em atmosfera de hidrogênio a 300 oC por 3 horas. As atividades eletrocatalíticas foram investigadas em temperatura ambiente (25 oC), em meio ácido, com eletrólito líquido estagnante e em condições controladas de transporte de massa (fluxo). Os estudos do efeito da temperatura (25 a 140 oC) foram conduzidos em eletrólito sólido utilizando-se membrana de AquivionTM. O monitoramento dos produtos gasosos e voláteis oriundos da ROE, e as medidas quantitativas para os cálculos de eficiência faradaica, em cada condição, foram feitos por meio do acoplamento de diferentes células eletroquímicas com um espectrômetro de massas do tipo DEMS (Differential Electrochemical Mass Spectrometry), permitindo a detecção on-line e instantânea. Os resultados obtidos em modos potenciodinâmico e potenciostático, em temperatura ambiente, mostraram maiores atividades eletrocatalíticas para os materiais contendo estanho. O eletrocatalisador de Rh/C apresentou a maior eficiência faradaica para a eletroconversão de etanol a CO2 (25,4%) em modo potenciodinâmico. No entanto, em modo potenciostático, as eficiências faradaicas foram próximas de zero para todos os eletrocatalisadores investigados, o que foi atribuído ao envenenamento progressivo por CO e espécies CHx adsorvidas, conforme evidenciado por medidas de stripping de adsorbatos em altos potenciais, feitas por DEMS em célula de fluxo. Os estudos do efeito da temperatura mostraram um aumento significativo da atividade eletrocatalítica, com forte diminuição da desativação do eletrocatalisador acima de 100 oC, e um máximo de corrente faradaica em 120 oC. Nesta temperatura, os resultados mostraram melhor desempenho para a membrana de AquivionTM quando comparado com a membrana de Nafion®, o que foi associado à sua maior capacidade de retenção de água devido à presença de cadeias laterais curtas, que possibilitam maior densidade de grupos sulfônicos. Medidas de DEMS on-line, em modo potenciostático, mostram que as eficiências faradaicas para a eletroconversão de etanol a CO2 aumentaram consideravelmente quando a temperatura passou de 25 ºC à 120 oC. Os valores aumentaram de aproximadamente zero para 54,9, 31,2, 30,2, e 10,2% para Rh/C, Pt/C, Sn/(PtRh)/C (1:3), e Sn/Pt/C (1:3), respectivamente. O impacto da temperatura foi, portanto, mais proeminente para Rh/C e isso foi associado à sua capacidade de desidrogenação do grupo metila, resultando na formação de uma espécie adsorvida pelo átomo de oxigênio e pelo átomo de carbono do grupo metila (oxametalacycle), o que facilita a quebra direta da ligação C-C, sendo a velocidade deste passo muito mais rápida em 120 oC do que em 25 oC. / The development of direct ethanol fuel cells or electrochemical ethanol reformers for hydrogen production, is limited by the difficulty of cleaving the C-C bond throughout the ethanol oxidation reaction (EOR), which is required for complete electroconversion or high efficiency for CO2 formation. In this context, this study aimed to investigate the effects of the electrocatalyst composition and temperature, on the faradaic efficiency during the EOR for CO2 formation and, thus, to advance in the knowledge of the factors that govern the reaction kinetics. The investigated electrocatalysts were formed by Sn/Pt/C (1:3), Sn/Ir/C (1:3), Sn/(PtRh)/C (1:3), and Sn/(IrRh)/C (1:3) nanoparticles and synthesized by thermal impregnation/decomposition method, followed by heat treatment under hydrogen atmosphere at 300 oC for 3 hours. The electrocatalytic activities were investigated at room temperature (25 oC), in acid medium, with stagnant liquid electrolyte, and under controlled conditions of mass transport (flow). The temperature effect studies (25 to 140 oC) were carried out in solid electrolyte using AquivionTM membrane. The monitoring of the gaseous and volatile products from EOR and the quantitative measurements for faradic efficiency calculations, at each experimental condition, were made by coupling different electrochemical cells to a Differential Electrochemical Mass Spectrometer (DEMS), allowing on-line and instant detection of the generated products. The results obtained in potentiodynamic and potentiostatic modes, at room temperature, showed higher electrocatalytic activities for the Sn-based materials. The Rh/C electrocatalyst showed the highest faradaic efficiency for the ethanol electroconversion to CO2 (25.4%) in potentiodynamic mode. However, in potentiostatic mode, the faradaic efficiencies were close to zero for all investigated electrocatalysts, which was attributed to the progressive surface poisoning by CO and CHx adsorbed species, evidenced by adsorbate stripping measurements in high potentials, using DEMS, in flow cell. The temperature effect studies showed a significant increase in electrocatalytic activity, with a strong decrease in the electrocatalyst deactivation, above 100 oC, and a maximum faradaic current at 120 oC. At this temperature, the results showed a better performance for AquivionTM when compared to the Nafion ® membrane, which was associated with its higher water retention due to short side chains, allowing higher density of sulfonic groups. On-line DEMS measurements, in potentiostatic mode, showed that the faradaic currents for the ethanol electroconversion to CO2 considerably increased at 120ºC, i. e., the efficiency improved from about zero (at 25oC) to 54.9, 31.2, 30.2, and 10.2% for Rh/C, Pt/C, Sn/Pt/C (1:3) and Sn/(PtRh)/C (1:3), respectively. Undeniably, the temperature impact was more prominent for Rh/C, and this was associated with its capacity for ethanol dehydrogenation from the methyl group, resulting in the formation of a specie adsorbed by the oxygen and by the methyl carbon atom (oxametalacycle), which facilitates the direct cleavage of the C-C bond, being the reaction rate of this step much faster at 120 oC than at 25 oC.
7

Relação morfologia-propriedades elétricas de eletrólitos compósitos de Nafion para célula a combustível de alta temperatura / Morphology-electrical properties relations in nafion composite electrolytes for high temperature fuel cell

MATOS, BRUNO R. de 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:35:38Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:03:58Z (GMT). No. of bitstreams: 0 / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
8

Relação morfologia-propriedades elétricas de eletrólitos compósitos de Nafion para célula a combustível de alta temperatura / Morphology-electrical properties relations in nafion composite electrolytes for high temperature fuel cell

MATOS, BRUNO R. de 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:35:38Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:03:58Z (GMT). No. of bitstreams: 0 / As células a combustível a etanol direto (DEFCs) são consideradas geradores de energia eficientes e de baixo impacto ambiental. O foco deste trabalho é avançar o entendimento sobre eletrólitos compósitos híbridos do tipo Nafion-cerâmica visando o aumento do desempenho das DEFCs operando em T ~ 130 °C. Partículas inorgânicas foram crescidas na matriz polimérica formando os compósitos Nafion-Sílica (NS), Nafion-Fosfato de Zircônio (NZ) e Nafion-Titânia (NT). Este último (NT) serviu como material precursor para a conversão in situ da titânia em nanotubos de titanato de hidrogênio por uma rota hidrotérmica alcalina assistida por micro-ondas (NNTH). A relação microestrutura-propriedades elétricas foi estudada por meio de medidas de espectroscopia dielétrica, análise dinâmico-mecânica, calorimetria diferencial exploratória e espalhamento de raios X em baixo ângulo. Estas técnicas contribuíram, por exemplo, para inferir a localização das partículas inorgânicas na estrutura multifásica do Nafion e estabelecer a sua influência nas propriedades gerais dos compósitos. Os resultados indicaram que as interações de repulsão eletrostática de longo alcance entre os grupos sulfônicos do Nafion hidratado provocam a transição conformacional das cadeias principais do estado enovelado para a conformação tipo bastão. Tal transição promove a redução da condutividade protônica e da estabilidade mecânica do Nafion para temperaturas acima da temperatura da relaxação (Tα ~ 110 °C), a qual pode ser deslocada para maiores temperaturas (T > 160 °C) nos compósitos híbridos. A interação das partículas de sílica e de titânia com a fase condutora do Nafion é maximizada, enquanto que as partículas de fosfato de zircônio estão localizadas majoritariamente nos domínios apolares. As interações entre os grupos sulfônicos do Nafion e as partículas de titânia contribuíram para a melhora das propriedades mecânicas em altas temperaturas e para a redução da permeabilidade ao etanol, as quais promoveram o aumento do desempenho da DEFC em altas temperaturas. A baixa permeabilidade ao etanol e as melhores propriedades termomecânicas e de transporte protônico dos compósitos NNTH refletiram em um elevado desempenho das DEFCs a 130 °C, evidenciando que estes eletrólitos compósitos são promissores para a aplicação pretendida. / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
9

Investigação da reação de eletrooxidação de etanol por DEMS on-line: efeito de diferentes eletrocatalisadores e da temperatura / Investigation of the Ethanol Electro-oxidation Reaction by on-line DEMS: Effect of Different Electrocatalysts and of the Temperature

Wanderson Oliveira da Silva 21 August 2017 (has links)
O desenvolvimento de células a combustível de etanol direto ou de reformadores eletroquímicos de etanol para a produção de hidrogênio, é limitado pela dificuldade da quebra da ligação C-C durante o curso da reação de oxidação de etanol (ROE), necessária para a completa eletroconversão ou alta eficiência para a formação de CO2. Diante desse contexto, este estudo teve como objetivo investigar os efeitos da composição dos eletrocatalisadores e da temperatura na eficiência faradaica da ROE para formação de CO2 e, assim, avançar no conhecimento dos fatores que governam a cinética de reação. Os eletrocatalisadores investigados foram formados por nanopartículas de Rh/C, Pt/C, Sn/Pt/C (1:3), Sn/Ir/C (1:3), Sn/(PtRh)/C (1:3) e Sn/(IrRh)/C (1:3), e sintetizadas pelo método de impregnação/decomposição térmica, seguido por tratamento em atmosfera de hidrogênio a 300 oC por 3 horas. As atividades eletrocatalíticas foram investigadas em temperatura ambiente (25 oC), em meio ácido, com eletrólito líquido estagnante e em condições controladas de transporte de massa (fluxo). Os estudos do efeito da temperatura (25 a 140 oC) foram conduzidos em eletrólito sólido utilizando-se membrana de AquivionTM. O monitoramento dos produtos gasosos e voláteis oriundos da ROE, e as medidas quantitativas para os cálculos de eficiência faradaica, em cada condição, foram feitos por meio do acoplamento de diferentes células eletroquímicas com um espectrômetro de massas do tipo DEMS (Differential Electrochemical Mass Spectrometry), permitindo a detecção on-line e instantânea. Os resultados obtidos em modos potenciodinâmico e potenciostático, em temperatura ambiente, mostraram maiores atividades eletrocatalíticas para os materiais contendo estanho. O eletrocatalisador de Rh/C apresentou a maior eficiência faradaica para a eletroconversão de etanol a CO2 (25,4%) em modo potenciodinâmico. No entanto, em modo potenciostático, as eficiências faradaicas foram próximas de zero para todos os eletrocatalisadores investigados, o que foi atribuído ao envenenamento progressivo por CO e espécies CHx adsorvidas, conforme evidenciado por medidas de stripping de adsorbatos em altos potenciais, feitas por DEMS em célula de fluxo. Os estudos do efeito da temperatura mostraram um aumento significativo da atividade eletrocatalítica, com forte diminuição da desativação do eletrocatalisador acima de 100 oC, e um máximo de corrente faradaica em 120 oC. Nesta temperatura, os resultados mostraram melhor desempenho para a membrana de AquivionTM quando comparado com a membrana de Nafion®, o que foi associado à sua maior capacidade de retenção de água devido à presença de cadeias laterais curtas, que possibilitam maior densidade de grupos sulfônicos. Medidas de DEMS on-line, em modo potenciostático, mostram que as eficiências faradaicas para a eletroconversão de etanol a CO2 aumentaram consideravelmente quando a temperatura passou de 25 ºC à 120 oC. Os valores aumentaram de aproximadamente zero para 54,9, 31,2, 30,2, e 10,2% para Rh/C, Pt/C, Sn/(PtRh)/C (1:3), e Sn/Pt/C (1:3), respectivamente. O impacto da temperatura foi, portanto, mais proeminente para Rh/C e isso foi associado à sua capacidade de desidrogenação do grupo metila, resultando na formação de uma espécie adsorvida pelo átomo de oxigênio e pelo átomo de carbono do grupo metila (oxametalacycle), o que facilita a quebra direta da ligação C-C, sendo a velocidade deste passo muito mais rápida em 120 oC do que em 25 oC. / The development of direct ethanol fuel cells or electrochemical ethanol reformers for hydrogen production, is limited by the difficulty of cleaving the C-C bond throughout the ethanol oxidation reaction (EOR), which is required for complete electroconversion or high efficiency for CO2 formation. In this context, this study aimed to investigate the effects of the electrocatalyst composition and temperature, on the faradaic efficiency during the EOR for CO2 formation and, thus, to advance in the knowledge of the factors that govern the reaction kinetics. The investigated electrocatalysts were formed by Sn/Pt/C (1:3), Sn/Ir/C (1:3), Sn/(PtRh)/C (1:3), and Sn/(IrRh)/C (1:3) nanoparticles and synthesized by thermal impregnation/decomposition method, followed by heat treatment under hydrogen atmosphere at 300 oC for 3 hours. The electrocatalytic activities were investigated at room temperature (25 oC), in acid medium, with stagnant liquid electrolyte, and under controlled conditions of mass transport (flow). The temperature effect studies (25 to 140 oC) were carried out in solid electrolyte using AquivionTM membrane. The monitoring of the gaseous and volatile products from EOR and the quantitative measurements for faradic efficiency calculations, at each experimental condition, were made by coupling different electrochemical cells to a Differential Electrochemical Mass Spectrometer (DEMS), allowing on-line and instant detection of the generated products. The results obtained in potentiodynamic and potentiostatic modes, at room temperature, showed higher electrocatalytic activities for the Sn-based materials. The Rh/C electrocatalyst showed the highest faradaic efficiency for the ethanol electroconversion to CO2 (25.4%) in potentiodynamic mode. However, in potentiostatic mode, the faradaic efficiencies were close to zero for all investigated electrocatalysts, which was attributed to the progressive surface poisoning by CO and CHx adsorbed species, evidenced by adsorbate stripping measurements in high potentials, using DEMS, in flow cell. The temperature effect studies showed a significant increase in electrocatalytic activity, with a strong decrease in the electrocatalyst deactivation, above 100 oC, and a maximum faradaic current at 120 oC. At this temperature, the results showed a better performance for AquivionTM when compared to the Nafion ® membrane, which was associated with its higher water retention due to short side chains, allowing higher density of sulfonic groups. On-line DEMS measurements, in potentiostatic mode, showed that the faradaic currents for the ethanol electroconversion to CO2 considerably increased at 120ºC, i. e., the efficiency improved from about zero (at 25oC) to 54.9, 31.2, 30.2, and 10.2% for Rh/C, Pt/C, Sn/Pt/C (1:3) and Sn/(PtRh)/C (1:3), respectively. Undeniably, the temperature impact was more prominent for Rh/C, and this was associated with its capacity for ethanol dehydrogenation from the methyl group, resulting in the formation of a specie adsorbed by the oxygen and by the methyl carbon atom (oxametalacycle), which facilitates the direct cleavage of the C-C bond, being the reaction rate of this step much faster at 120 oC than at 25 oC.
10

Síntese e caracterização de eletrocatalisadores Pt/C, PtAu/C e PtAuBi/C pelo método da redução via feixe de elétrons para oxidação direta de metanol e etanol / Síntese e caracterização de eletrocatalisadores Pt/C, PtAu/C e PtAuBi/C pelo método da redução via feixe de elétrons para oxidação direta de metanol e etanol

CARDOSO, ELISANGELA S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:35:07Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:00:26Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP

Page generated in 0.0347 seconds