1 |
Quantum networking with atomic ensemblesMatsukevich, Dzmitry 10 July 2006 (has links)
Quantum communication networks enable secure transmission of information between remote sites. However, at present, photon losses in the optical fiber limit communication distances to less than 150 kilometers. The quantum repeater idea allows extension of these distances. In practice, it involves the ability to store quantum information for a long time in atomic systems and coherently transfer quantum states between matter and light. Previously known schemes involved atomic Raman transitions in the UV or near-infrared and suffered from severe loss in optical fiber that precluded long-distance quantum communication.
|
2 |
Análise de eficiência e escalabilidade do protocolo DLCZ para repetidores quânticosda Silva Mendes, Milrian 31 January 2009 (has links)
Made available in DSpace on 2014-06-12T18:02:37Z (GMT). No. of bitstreams: 2
arquivo2379_1.pdf: 3057093 bytes, checksum: 296f8d7acc9fd1be515e5c4a4e412e9c (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2009 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Neste trabalho, analisamos a distribuição do emaranhamento sobre redes quânticas
usando memórias quânticas para o armazenamento da informação em ensembles atômicos,
através de um esquema conhecido como protocolo DLCZ, cujo objetivo é distribuir
emaranhamento e efetuar Distribuição Quântica de Chaves sobre grandes distâncias,
usando uma arquitetura de repetidores quânticos. Baseado nesta proposta, analisamos, no
regime de variáveis discretas, a troca de emaranhamento em cascata entre N pares de
ensembles. Nossa análise envolve o mapeamento dos estados na base de número de
excitação, e uma restrição ao subespaço onde não mais que uma excitação é armazenada
em cada ensemble. Com base nesta última restrição, fizemos análises de tomografia
quântica dos campos gerados e as utilizamos para inferir teoricamente o impacto de várias
imperfeições sobre os experimentos. Assim, calculamos a concorrência (medida de
emaranhamento) do estado resultante depois de várias trocas de emaranhamento, e
analisamos sua degradação com o aumento do número de trocas e com o aumento da
probabilidade p de geração de uma única excitação nos ensembles atômicos. Também
calculamos a violação da desigualdade de Bell CHSH, para estados de polarização dos
campos obtidos a partir de pares de estados atômicos delocalizados com a degradação do
emaranhamento. Obtemos então um valor máximo de p para os quais ainda podemos violar
tal desigualdade após um certo número de trocas, indicando os recursos mínimos totais
necessários para efetuar a distribuição quântica de chaves no sistema. Finalmente, através
da análise da probabilidade de sucesso na geração de tais estados degradados após um certo
tempo, estimamos o tempo de memória necessário para o protocolo suceder após um certo
número de trocas de emaranhamento e analisamos como este tempo escala com o
comprimento do canal de comunicação
|
3 |
Theory of light-matter interactions in cascade and diamond type atomic ensemblesJen, Hsiang-Hua 09 November 2010 (has links)
In this thesis, we investigate the quantum mechanical interaction of light with matter in the form of a gas of ultracold atoms: the atomic ensemble. We present a theoretical analysis of two problems, which involve the interaction of quantized electromagnetic fields (called signal and idler) with the atomic ensemble (i) cascade two-photon emission in an atomic ladder configuration, and (ii) photon frequency conversion in an atomic diamond configuration. The motivation of these studies comes from potential applications in long-distance quantum communication where it is desirable to generate quantum correlations between telecommunication wavelength light fields and ground level atomic coherences. In the two systems of interest, the light field produced in the upper arm of an atomic Rb level scheme is chosen to lie in the telecom window. The other field, resonant on a ground level transition, is in the near-infrared region of the spectrum. Telecom light is useful as it minimizes losses in the optical fiber transmission links of any two long-distance quantum communication device.
We develop a theory of correlated signal-idler pair correlation. The analysis is complicated by the possible generation of multiple excitations in the atomic ensemble. An analytical treatment is given in the limit of a single excitation assuming adiabatic laser excitations. The analysis predicts superradiant timescales in the idler emission in agreement with experimental observation. To relax the restriction of a single excitation, we develop a different theory of cascade emission, which is solved by numerical simulation of classical stochastic differential equation using the theory of open quantum systems. The simulations are in good qualitative agreement with the analytical theory of superradiant timescales. We further analyze the feasibility of this two-photn source to realize the DLCZ protocol of the quantum repeater communication system.
We provide a quantum theory of near-infrared to telecom wavelength conversion in the diamond configuration. The system provides a crucial part of a quantum-repeater memory element, which enables a "stored" near-infrared photon to be converted to a telecom wavelength for transmission without the destruction of light-atom quantum correlation. We calculate the theoretical conversion efficiency, analyzing the role of optical depth of the ensemble, pulse length, and quantum fluctuations on the process.
|
4 |
Towards quantum telecommunication and a Thorium nuclear clockRadnaev, Alexander G. 17 August 2012 (has links)
This thesis presents the investigations of Rubidium atoms in magneto-optical traps and triply charged Thorium ions in electrodynamic traps for future advances in long-distance quantum telecommunication, next generation clocks, and fundamental tests of current physical theories. Experimental realizations of two core building blocks of a quantum repeater are described: a multiplexed quantum memory and a telecom interface for long-lived quantum memories. A color change of single-photon level light fields by several hundred nanometers in an optically thick cold gas is demonstrated, while preserving quantum entanglement with a remotely stored matter excitation. These are essential elements for long-distance quantum telecommunication, fundamental tests of quantum mechanics, and applications in secure communication and computation. The first trapping and laser cooling of Thorium-229 ions are described. Thorium-229 nuclear electric quadrupole moment is revealed by hyperfine spectroscopy of triply charged Thorium-229 ions. A system to search for the isomer nuclear transition in Thorium-229 is developed and tested with the excitation of a forbidden electronic transition at 717 nm. Direct excitation of the nuclear transition with laser light would allow for an extremely accurate clock and a sensitive test bed for variations of fundamental physical constants, including the fine structure constant.
|
Page generated in 0.019 seconds