Spelling suggestions: "subject:"DNA - deoxyribonucleic acid"" "subject:"DNA - desoxyribonucleic acid""
1 |
DNA Binding Studies With The Transcriptional Activator Protein C Of Bacteriophage MURamesh, V 10 1900 (has links) (PDF)
No description available.
|
2 |
L’homéostasie des métaux chez la bactérie Escherichia coli : de l’analyse générale d’un stress sur l’expression des gènes, à la compréhension des mécanismes moléculaires / Metal homeostasis in the bacterium E. coli : from the transcriptomic analysis of a stress, to the understanding of the molecular mechanismsGault, Manon 12 December 2014 (has links)
Les métaux sont indispensables à la vie cellulaire car ils sont constitutifs des protéines. Les ions Ni, font partie intégrante des hydrogénases, enzymes primordiales pour le métabolisme énergétique. Paradoxalement, en excès, les métaux deviennent toxiques pour la cellule. Les bactéries luttent contre cette toxicité en produisant des systèmes de résistance ou d’adaptation. Les cellules procaryotes peuvent équilibrer les teneurs en métaux en contrôlant leur entrée ou leur efflux grâce à la biogenèse de transporteurs spécifiques. L’objectif de ces travaux de thèse a consisté à comprendre les mécanismes principaux permettant à la bactérie modèle Escherichia coli de s’adapter à de fortes variations en ions métalliques, en prenant comme modèle un stress provoqué par un excès d’ions Ni. Afin d’appréhender l’ensemble de la réponse cellulaire, l’effet de ce stress a été évalué sur l’expression de l’ensemble des gènes d’E. coli par des approches de transcriptomique couplées à une validation fonctionnelle. L’excès d’ions Ni induit le système d’efflux RcnRAB. En plus de la pompe d’efflux RcnA, ce système comporte une protéine périplasmique, RcnB, qui module le trafic des ions Ni ou Co via RcnA. Ces travaux ont montré que RcnB n’interagit pas avec les ions Ni ou Co mais de façon inattendue avec les ions Cu, définissant une nouvelle classe de cupro-protéines. Nous montrons que si RcnB n’intervient pas dans le contrôle de l’homéostasie du Cu, l’interaction avec ces ions est essentielle à sa fonction dans la modulation de l’efflux des ions Ni et Co. Ces résultats suggèrent des connexions entre les différents systèmes de maintien des homéostasies métalliques. Les résultats d’analyse transcriptomique montrent une forte modulation de l’expression des gènes impliqués dans les homéostasies du Cu et du Fe en présence d’un excès d’ions Ni, corrélée à une augmentation cellulaire de leur teneur mesurée par spectrométrie plasma. Ces métaux sont responsables de la production d’espèces réactives oxygénées entraînant de sérieux dégâts cellulaires, une des cibles privilégiée étant l’ADN. Nous montrons que les ions Ni ne provoquent pas de cassures de l’ADN et n’ont pas d’effet mutagène, par contre ils provoquent une modification importante de l’état de repliement de l’ADN. Nous proposons que ce relâchement de l’ADN soit dû à l’induction indirecte d’un stress oxydant. Ces travaux ont aboutis à l’identification du premier système de transport spécifique des ions Ni à travers la membrane externe chez E. coli. En résumé, un excès d’ions Ni affecte les systèmes spécifiques d’entrée et d’efflux des ions métalliques troublant les teneurs intracellulaires des autres métaux comme le Cu et le Fe. Ces métaux sont en partie responsables de la production de ROS létaux pour les cellules bactériennes. L’excès de Ni va induire une profonde reprogrammation génétique entraînant des changements physiologiques multifactoriels importants pour la survie bactérienne dans ces conditions de stress. / Metals are necessary components of all living cells because they are constitutive of many essential proteins. Nickel, for example, is required for hydrogenase activity, which is essential for the energetic metabolism. However, metals become toxic when present in excess. Prokaryotes can overcome this toxicity by using several systems of resistance or adaptation. Import systems must be repressed whereas export pathways activated. This work consists in bringing out the principal strategies established by Escherichia coli for accommodating a stress caused by an excess of Ni ions. In order to understand the cellular response, the effect of nickel stress has been evaluated in E. coli by a transcriptomic approach coupled to functional validation. Excess Ni induces the biosynthesis of the efflux system RcnRAB. In addition to the RcnA efflux pump, this system contains a periplasmic protein called RcnB. This protein modulates Ni and Co traffic. RcnB displayed no Ni or Co binding capacity but was shown to bing Cu ions. RcnB was characterized as a new family of cupro-protein. We showed that RcnB is not involved in the control of Cu homeostasis but that Cu binding is essential for its Ni and Co efflux function. Our results suggest connections between different systems of metals homeostasis. Indeed, RNA-Seq data analysis revealed that exposure to Ni induces strong variations of the expression of genes involved in Cu and Fe homeostasis. Our results correlated with an increase of intracellular Cu and Fe pools as assayed by plasma spectrometry. Both metals are involved in reactive oxygen species (ROS) production and generate serious cell damages, targeting DNA for example. We showed that Ni ions do not trigger DNA breakage and are not mutagenic. On the other hand, Ni stress has a strong effect on DNA folding. We propose that excess Ni causes DNA relaxation by the indirect induction of oxidative stress. Furthermore, we identified the first transport system specific for Ni ions localized in the outer membrane. This system, composed of YddA and YddB, allows the transfer of Ni ions accross the two membranes. The genes encoding these proteins are expressed in conditions evocative of a biofilm lifestyle. Moreover, this work showed that Ni stress promotes biofilm growth instead of a planktonic one. Indeed, in the presence of an excess of Ni ions, genes encoding flagella are down regulated whereas genes encoding adherence structures are up regulated. To conclude, an excess of Ni ions affects specific metals import and efflux systems unbalancing intracellular Fe and Cu contents. These metals in turn generate ROS that are toxic for the bacterial cells. Ni stress induces large transcriptomic modifications causing major physiological changes important for the survival of the bacteria.
|
3 |
Mechanics and dynamics of twisted DNABrutzer, Hergen 04 March 2013 (has links)
Aufgrund einer komplexen Wechselwirkung mit Proteinen ist das Genom in einer Zelle ständig mechanischer Spannung und Torsion ausgesetzt. Daher ist es wichtig die Mechanik und die Dynamik von verdrillter DNA unter Spannung zu verstehen. Diese Situation wurde experimentell mittels einer sog. magnetischen Pinzette nachgestellt, indem sowohl Kraft als auch Drehmoment auf ein einzelnes DNA Molekül ausgeübt und gleichzeitig die mechanische Antwort des Polymers aufgezeichnet wurde.
Als erstes Beispiel wurde der Übergang von linearer zu sog. plectonemischer DNA untersucht, d.h. die Absorption eines Teils der induzierten Verdrillung in einer superhelikalen Struktur. Eine abrupte Längenänderung am Anfang dieses Übergangs wurde bereits im Vorfeld publiziert. In der vorliegenden Arbeit wird gezeigt, dass diese abrupte DNA Verkürzung insbesondere von der Länge der DNA und der Ionenkonzentration der Lösung abhängt. Dieses Verhalten kann mittels eines Modells verstanden werden, in dem die Energie pro Verwringung der ersten Schlinge innerhalb der Superhelix größer ist als die aller nachfolgenden.
Des Weiteren wurden DNA-DNA Wechselwirkungen in der Umgebung monovalenter Ionen durch die Analyse des Superspiralisierungsverhaltens einzelner DNA Moleküle bei konstanter Kraft charakterisiert. Solche Wechselwirkungen sind für die Kompaktierung des Genoms und die Regulation der Transkription wichtig. Oft wird DNA als gleichmäßig geladener Zylinder modelliert und ihre elektrostatischen Wechselwirkungen im Rahmen der Poisson-Boltzmann-Gleichung mit einem Ladungsanpassungsfaktor berechnet. Trotz erheblicher Anstrengung ist eine präzise Bestimmung dieses Parameters bisher nicht gelungen. Ein theoretisches Modell dieses Prozesses zeigte nun eine erstaunlich kleine effektive DNA Ladung von ~40% der nominalen Ladungsdichte.
Abgesehen von Gleichgewichtsprozessen wurde auch die Dynamik eines Faltungsvorgangs von DNA untersucht. Spontane Branch Migration einer homologen Holliday-Struktur wurde genutzt, um die intramolekulare Reibung der DNA zu erforschen. Mittels einer magnetischen Pinzette wurde eine torsionslimitierte Holliday-Struktur gestreckt während die Längenfluktuationen der Zweige mit schneller Videomikroskopie bei ~3 kHz aufgezeichnet wurden. Einzelne diffusive Schritte der Basenpaare sollten auf einer sub-Millisekunden Zeitskala auftreten und viel kleiner als die Gesamtfluktuationen der DNA sein. Eine Analyse der spektralen Leistungsdichte der Längenfluktuationen ermöglicht eine eindeutige Beschreibung der Dynamik der Branch Migration.
Die Holliday-Struktur wurde außerdem als nanomechanischer Linearversteller eingesetzt, um einen einzelnen fluoreszierenden Quantenpunkt durch ein exponentiell abfallendes evaneszentes Feld zu bewegen. Durch die Aufzeichnung der Emission des Quantenpunkts sowohl in dem evaneszenten Feld als auch unter gleichmäßiger Beleuchtung kann die Intensitätsverteilung des Anregungsfelds ohne weitere Dekonvolution bestimmt werden. Diese neue Technik ist von besonderem wissenschaftlichen Interesse, weil die Beschreibung dreidimensionaler inhomogener Beleuchtungsfelder eine große Herausforderung in der modernen Mikroskopie darstellt.
Die Ergebnisse dieser Arbeit werden dem besseren Verständnis einer Vielzahl biologischer Prozesse, die in Verbindung mit DNA Superspiralisierung stehen, dienen und weitere technische Anwendungen des DNA-basierten Linearverstellers hervorbringen. / The genome inside the cell is continuously subjected to tension and torsion primarily due to a complex interplay with a large variety of proteins. To gain insight into these processes it is crucial to understand the mechanics and dynamics of twisted DNA under tension. Here, this situation is mimicked experimentally by applying force and torque to a single DNA molecule with so called magnetic tweezers and measuring its mechanical response.
As a first example a transition from a linear to a plectonemic DNA configuration is studied, i.e. the absorption of part of the applied twist in a superhelical structure. Recent experiments revealed the occurrence of an abrupt extension change at the onset of this transition. Here, it is found that this abrupt DNA shortening strongly depends on the length of the DNA molecule and the ionic strength of the solution. This behavior can be well understood in the framework of a model in which the energy per writhe for the initial plectonemic loop is larger than for subsequent turns of the superhelix.
Furthermore DNA-DNA interactions in the presence of monovalent ions were comprehensively characterized by analyzing the supercoiling behavior of single DNA molecules held under constant tension. These interactions are important for genome compaction and transcription regulation. So far DNA is often modeled as a homogeneously charged cylinder and its electrostatic interactions are calculated within the framework of the Poisson-Boltzmann equation including a charge adaptation factor. Despite considerable efforts, until now a rigorous quantitative assessment of this parameter has been lacking. A theoretical model of this process revealed a surprisingly small effective DNA charge of ~40% of the nominal charge density.
Besides describing equilibrium processes, also the dynamics during refolding of nucleic acids is investigated. Spontaneous branch migration of a homologous Holliday junction serves as an ideal system where the friction within the biomolecule can be studied. This is realized by stretching a torsionally constrained Holliday junction using magnetic tweezers and recording the length fluctuations of the arms with high-speed videomicroscopy at ~3 kHz. Single base pair diffusive steps are expected to occur on a sub-millisecond time scale and to be much smaller than the overall DNA length fluctuations. Power-spectral-density analysis of the length fluctuations is able to clearly resolve the overall dynamics of the branch migration process.
Apart from studying intramolecular friction, the four-arm DNA junction was also used as a nanomechanical translation stage to move a single fluorescent quantum dot through an exponentially decaying evanescent field. Recording the emission of the quantum dot within the evanescent field as well as under homogeneous illumination allows to directly obtain the intensity distribution of the excitation field without additional deconvolution. This new technique is of particular scientific interest because the characterization of three-dimensional inhomogeneous illumination fields is a challenge in modern microscopy.
The results presented in this work will help to better understand a large variety of biological processes related to DNA supercoiling and inspire further technical applications of the nanomechanical DNA gear.
|
4 |
Voltametrické studium interakce genotoxického 2-nitrofluorenu s DNA na visící rtuťové kapkové elektrodě / Voltammetric Study of the Interaction of Genotoxic 2-Nitrofluorene with DNA at a Hanging Mercury Drop ElectrodeKrejčová, Zuzana January 2011 (has links)
In this Diploma Thesis, an interaction of genotoxic environmental pollutant 2-nitrofluorene with a double-stranded calf thymus DNA has been studied using a hanging mercury drop electrode (HMDE) as an electrochemical sensor. Two types of DNA damage were investigated and electrochemically detected (using cyclic voltammetry and differential pulse voltammetry): (i) The DNA damage caused by the direct interaction with 2-nitrofluorene and (ii) the DNA damage caused by short-lived radicals generated by the electrochemical reduction of the nitro group in 2-nitrofluorene. For the study of direct interaction, HMDE was modified by DNA and the interaction of DNA with 2-nitrofluorene was studied, after their incubation, right at the HMDE surface (adsorptive transfer stripping technique) or the DNA was preincubated with 2-nitrofluorene and, subsequently, the interaction was studied voltammetrically (DNA titration technique). Using both detection techniques, the formation of DNA - 2-nitrofluorene complex was observed and the mutual interaction was interpreted as an intercalation between the DNA base pairs, although such interaction was not clearly confirmed by UV-visible absorption spectroscopy. An electrostatic binding of 2-nitrofluorene on DNA sugar-phosphate backbone was partially formed at low concentrations of...
|
Page generated in 0.0578 seconds