• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 502
  • 135
  • 56
  • 46
  • 33
  • 12
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 1055
  • 1055
  • 261
  • 174
  • 170
  • 150
  • 146
  • 117
  • 102
  • 93
  • 90
  • 79
  • 79
  • 70
  • 67
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Development of clinical biomarkers of DNA double strand breaks for cancer care

Shah, Ketan January 2012 (has links)
Many anticancer therapies, including radiotherapy, act by damaging the deoxyribosenucleic acid (DNA) that is fundamental to cell function and proliferation. H2AX is a histone protein associated with DNA that is phosphorylated to produce γH2AX in response to DNA double strand breaks (DSBs), the most lethal lesions caused in cancer cells. This thesis examines the translation of γH2AX detection assays to clinical situations in order to provide biomarkers of response that might help to guide the treatment of cancer patients. γH2AX immunohistochemistry was developed in preclinical xenograft models, and validated over a range of radiation doses and over time after irradiation. The method was prepared for translation to archived clinical biopsy and surgical specimens. The DSB Biomarkers Pilot Study was established in order to develop a method for γH2AX quantification in direct tumour cell specimens obtained using the clinical technique of fine needle aspiration (FNA) cytology. Eleven patients undergoing anticancer therapy were recruited to the study, and the method evaluated. The coefficient of variation of the measure was 49%. Non-invasive imaging for γH2AX would allow DNA damage to be quantified in all tumour sites, and on multiple occasions. An antibody-based nuclear medicine imaging agent was re-engineered using Fab fragments of the antibody. The novel agent demonstrated improved pharmacokinetics when compared to the whole antibody agent, but reduced target specificity. The findings further develop the potential to exploit DNA damage biomarker measurements in clinical oncology.
152

The cell cycle phase specificity of DNA damage induced by radiation, peroxide and chemotherapeutic drugs targeting topoisomerase II, and CD4 and CD8 receptor expression on apoptotic human lymphocytes /

Potter, Alan J. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 128-159).
153

DNA mismatch repair and hypermutability in the physiology and pathogenesis of Haemophilus influenzae

Watson, Michael E., January 2004 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 2004. / Typescript. Vita. Includes bibliographical references (leaves 156-180). Also issued on the Internet.
154

DNA damage response activated by anti-cancer agent, irofulven

Wiltshire, Timothy D. January 2007 (has links)
Thesis (Ph. D.)--West Virginia University, 2007. / Title from document title page. Document formatted into pages; contains ix, 227 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
155

Interaction fontionnelle entre le système de tolérance des lésions et le checkpoint des dommages à l'ADN : conséquences sur la stabilité du génome et l'oncogenèse / Functional interaction between the DNA damage tolerance pathway and the DNA damage checkpoint : implications for genome stability and oncogenesis

Kermi, Chames 14 December 2016 (has links)
Notre génome subit constamment les effets néfastes des agents endommageant de l'ADN. Afin de se protéger de ces effets délétères, les cellules disposent d’un système de détection des dommages à l’ADN (point de contrôle ou « checkpoint »). Certaines lésions peuvent persister quand les cellules entrent en phase S et inhiber ainsi la synthèse de l’ADN en interférant avec les ADN polymérases réplicatives. Ceci peut provoquer des arrêts prolongés des fourches de réplication ce qui fragilise l’ADN. Pour préserver l’intégrité de l’information génétique, les cellules ont développé une voie de tolérance qui implique des ADN polymérases spécialisées dans la réplication des lésions, appelées ADN Polymérases translésionnelles (Pols TLS). Dans ce processus, PCNA joue le rôle de facteur d’échafaudage pour de nombreuses protéines impliquées dans le métabolisme de l'ADN. Les mécanismes de régulation des échanges entre les différents partenaires de PCNA ne sont pas très bien compris. Parmi les protéines qui interagissent avec PCNA, CDT1, p21 ou encore PR-Set7/Set8 sont caractérisées par une forte affinité pour cette protéine. Ces dernières possèdent un motif d’interaction particulier avec PCNA, nommé « PIP degron », qui favorise leur protéolyse d'une manière dépendante de l’E3 ubiquitine ligase CRL4Cdt2. Après irradiation aux UV-C, le facteur d’initiation de la réplication CDT1 est rapidement détruit d’une manière dépendante de son PIP degron, Dans la première partie de mon travail, j’ai contribué à comprendre le rôle fonctionnel de cette dégradation. Les résultats obtenus ont fourni des évidences expérimentales qui montrent que l’inhibition de la dégradation de CDT1 par CRL4Cdt2 dans les cellules de mammifères compromet la relocalisation des TLS Pol eta et Pol kappaen foyers nucléaires induits par les irradiations UV-C. On a constaté que seules les protéines qui contiennent un PIP degron interfèrent avec la formation de foyers de Pol eta. La mutagenèse du PIP degron de CDT1 a révélé qu'un résidu de thréonine conservé parmi les PIP degrons est essentiel pour l'inhibition de la formation des foyers des TLS Polymérases. Les résultats obtenus suggèrent que l’élimination de protéines contenant des PIP degrons par la voie CRL4Cdt2 régule le recrutement de TLS Polymérases au niveau des sites des dommages induits par les UV-C.Dans un second temps, on s’est intéressé à l’étude du checkpoint des dommages à l’ADN au cours de l’embryogénèse. En effet, dans les embryons précoces, le checkpoint est silencieux jusqu'à la transition de mid-blastula (MBT), en raison de facteurs maternels limitants. Dans ce travail, nous avons montré, aussi bien in vitro qu’in vivo, que l’ubiquitine ligase de type E3 RAD18, un régulateur majeur de la translésion, est un facteur limitant pour l’activation du checkpoint dans les embryons de xénope. Nous avons montré que l'inactivation de la fonction de l’ubiquitine ligase RAD18 conduit à l'activation du checkpoint par un mécanisme qui implique l’arrêt des fourches de réplication en face des lésions produites par les UV-C. De plus, nous avons montré que l'abondance de RAD18 et de PCNA monoubiquitiné (PCNAmUb) est régulée au cours de l’embryogénèse. À l’approche de la MBT, l’abondance de l'ADN limite la disponibilité de RAD18, réduisant ainsi la quantité de PCNAmUb et induisant la dé-répression du checkpoint. En outre, nous avons montré que cette régulation embryonnaire peut être réactivée dans les cellules somatiques de mammifères par l'expression ectopique de RAD18, conférant une résistance aux agents qui causent des dommages à l'ADN. Enfin, nous avons trouvé que l'expression de RAD18 est élevée dans les cellules souches cancéreuses de glioblastome hautement résistantes aux dommages de l'ADN. En somme, ces données proposent RAD18 comme un facteur embryonnaire critique qui inhibe le point de contrôle des dommages de l’ADN et suggèrent que le dérèglement de l’expression de RAD18 peut avoir un potentiel oncogénique inattendu / Our genome is continuously exposed to DNA damaging agents. In order to preserve the integrity of their genome, cells have evolved a DNA damage signalling pathway known as checkpoint. Some lesions may persist when cells enter the S-phase and halt the progression of replicative DNA polymerases. This can cause prolonged replication forks stalling which threaten the stability of the genome. To preserve the integrity of genetic information, cells have developed a tolerance pathway which involves specialized DNA polymerases, called translesion DNA polymerases (TLS Pols). These polymerases have the unique ability to accommodate the damaged bases thanks to their catalytic site. In this process, PCNA acts as a scaffold for many proteins involved in DNA metabolism. The mechanisms governing the exchanges between different PCNA partners are not well understood. Among the proteins that interact with PCNA, CDT1, p21 and PR-Set7/set8 are characterized by a high binding affinity. These proteins have a particular interaction domain with PCNA, called "PIP degron", which promotes their proteasomal degradation via the E3 ubiquitin ligase CRL4Cdt2. After UV-C irradiation, the replication initiation factor CDT1 is rapidly degraded in a PIP degron-dependent manner. During the first part of my work, we wanted to understand the functional role of this degradation. Our results have shown that inhibition of CDT1 degradation by CRL4Cdt2 in mammalian cells, compromises the relocalisation of TLS Pol eta and Pol kappato nuclear foci after UV-C irradiation. We also found that only the proteins which contain a PIP degron interfere with the formation of Pol eta foci. Mutagenesis experiments on CDT1 PIP degron revealed that a threonine residue conserved among PIP degrons is essential for inhibiting foci formation of at least two TLS polymerases. This results suggest that CRL4Cdt2-dependent degradation of proteins containing PIP degrons regulates the recruitment of TLS polymerases at sites of UV-induced DNA damage.During the second part of my thesis, we studied DNA damage checkpoint regulation during embryogenesis. Indeed, in early embryos, the DNA damage checkpoint is silent until the mid-blastula transition (MBT) due to maternal inhibiting factors. In this work, we have shown, both in vitro and in vivo, that the E3 ubiquitin ligase RAD18, a major regulator of translesion DNA synthesis, is a limiting factor for the checkpoint activation in Xenopus embryos. We have also shown that RAD18 depletion leads to the activation of DNA damage checkpoints by inducing replication fork uncoupling in front of the lesions. Furthermore, we showed that the abundance of RAD18 and PCNA monoubiquitination (PCNAmUb) is regulated during embryonic development. Near the MBT, the increased abundance of DNA limits the availability of RAD18, thereby reducing the amount of PCNAmUb and inducing the de-repression of the checkpoint. Moreover, we have shown that this embryonic-like regulation can be reactivated in somatic mammalian cells by ectopic expression of RAD18, conferring resistance to DNA damaging. Finally, we found high RAD18 levels in glioblastoma cancer stem cells highly resistant to DNA damage. All together, these data propose RAD18 as a critical factor that inhibits DNA damage checkpoint in early embryos and suggests that dysregulation of RAD18 expression may have an unexpected oncogenic potential
156

Functional characterization of tumor suppressors from the SEA / GATOR complex / Functional characterization of tumor suppressors from the SEA / GATOR complex

Ma, Yinxing 27 September 2017 (has links)
La plupart des voies de signalisation qui régule la croissance cellulaire et le métabolisme sont sous le contrôle du mécanisme du complexe I de la rapamycine (mTORC1). L'un des régulateurs en amont de mTORC1, impliqués dans la détection des acides aminés et l'autophagie, est complexe SEA, chez la levure, et le complexe GATOR, chez les mammifères. Plusieurs composants de GATOR sont dérégulés dans de nombreux cancers et maladies neurodégénératives. Malgré l'intérêt scientifique vis à vis du complexe SEA / GATOR, de nombreux détails concernant sa fonction et son implication dans différents troubles humains sont encore inconnus et restent à investiguer.L'objectif principal de ma thèse était d’élargir notre connaissance sur le complexe SEA / GATOR, et plus particulièrement en ce qui concerne son rôle dans la modulation des voies de signalisation cellulaire. Étant donné que le SEA / GATOR est très conservé, j'ai effectué les expériences en utilisant deux modèles cellulaires : levure S. cerevisiae et lignées cellulaires humaines. Les résultats obtenus ont permis de démontrer un nouveau rôle pour le NPRL2, composant de GATOR, distinct de sa fonction dans la régulation de la voie mTORC1. Nous avons constaté que l'expression ectopique de la NPRL2 induit un stress oxydant et conduit aux dommages de l'ADN et à l'apoptose. Les études sur la levure ont révélé que le complexe SEA relie la voie mTORC1 et la régulation du contrôle de la qualité des mitochondries. Par conséquent, le complexe SEA / GATOR émerge en tant que régulateur multifonctionnel de plusieurs processus cellulaires. / The major signaling pathway that regulates cell growth and metabolism is under the control of the mechanistic target of rapamycin complex 1 (mTORC1). One of the mTORC1 upstream regulators involved in amino acid sensing and autophagy is called the SEA complex in yeast and GATOR in mammalian cells. Several GATOR components are deregulated in many cancers and neurodegenerative diseases. Despite of the growing interest to the SEA/GATOR, many details concerning its function and implication in different human disorders are still unknown.The main objective of my thesis was to extend our knowledge about the SEA/GATOR, especially what concerns its role in the modulating cellular signaling network. Because the SEA/GATOR is highly conserved I performed the experiments using two model systems - budding yeast S. cerevisiae and human cells lines. The results I obtained allowed to demonstrate a new role for the GATOR component NPRL2, distinct from its function in mTORC1 regulation. We found that ectopic expression of NPRL2 induces oxidative stress and leads to the DNA damage and apoptosis. The studies in yeast revealed that the SEA complex connects the TORC1 pathway and the regulation of mitochondria quality control. Therefore, the SEA/GATOR complex is emerging as a multifunctional regulator of several cellular processes.
157

The behavior of RAD51D and XRCC2 in response to drug induced DNA damage and a continuing study of the fly RAD51 paralogs

Van Laar, Tricia A. 01 January 2011 (has links)
Repair of DNA damage is one of the most important processes undergone in a dividing cell. This is a two-part study undertaken to better understand some of the proteins involved in the sensing and repair of DNA damage in Drosophila melanogaster. The first portion of this experiment followed two Drosophila Rad51 paralogs, dmRad51D and dmXRRC2, and using constructs tagged with GFP, found that they entered the nucleus in response to drug induced DNA damage. Approximately one hour after the induction of DNA damage via bleomycin, dmRad51D and dmXRCC2 entered the nucleus of the Drosophila culture cells, where they remained for the next three to four hours. Following this period in the nucleus, the cells were visualized moving back into the cytosol. The second portion of this experiment was concerned with the four Drosophila Rad51 paralogs (dmRad51 D, dmXRCC2, Spn B, and Spn D) and two paralogs from Homo sapiens (hsRad51 D and dmRad51 D) and their interactions.
158

High Glucose Increases DNA Damage and Elevates the Expression of Multiple DDR Genes

Rahmoon, M.A., Elghaish, R.A., Ibrahim, A.A., Alaswad, Z., Gad, M.Z., El-Khamisy, Sherif, Elserafy, M. 01 November 2023 (has links)
Yes / The DNA Damage Response (DDR) pathways sense DNA damage and coordinate robust DNA repair and bypass mechanisms. A series of repair proteins are recruited depending on the type of breaks and lesions to ensure overall survival. An increase in glucose levels was shown to induce genome instability, yet the links between DDR and glucose are still not well investigated. In this study, we aimed to identify dysregulation in the transcriptome of normal and cancerous breast cell lines upon changing glucose levels. We first performed bioinformatics analysis using a microarray dataset containing the triple-negative breast cancer (TNBC) MDA-MB-231 and the normal human mammary epithelium MCF10A cell lines grown in high glucose (HG) or in the presence of the glycolysis inhibitor 2-deoxyglucose (2DG). Interestingly, multiple DDR genes were significantly upregulated in both cell lines grown in HG. In the wet lab, we remarkably found that HG results in severe DNA damage to TNBC cells as observed using the comet assay. In addition, several DDR genes were confirmed to be upregulated using qPCR analysis in the same cell line. Our results propose a strong need for DDR pathways in the presence of HG to oppose the severe DNA damage induced in cells. / Wellcome Trust
159

Study of DNA double strand break repair in Dictyostelium discoideum

Lempidaki, Styliani January 2012 (has links)
The homologous recombination (HR) pathway contributes to genome integrity by mediating double strand break (DSB) repair using a homologous DNA sequence as a template. In mammals Rad51 and Brca2 are molecules central to this process. Little is known about HR repair in Dictyostelium. However, research previously conducted on DSB repair using this organism has shown that DSB repair pathways are highly conserved when compared to humans. This encouraged study of HR in this organism. In this study, through a bioinformatics search I have identified putative orthologues of most human HR proteins and most interestingly of BRCA2, which cannot be found in other lower eukaryotes used as models for DSB repair, such as the budding yeast S.cerevisiae. Brcp, the Dictyostelium BRCA2 ortholog, shows similar domain structure when compared to BRCA2-related proteins identified in other organisms. To verify the implication of HR proteins in DSB repair, I developed a method to monitor recruitment of DNA repair proteins on chromatin upon DSB induction. Findings of this study suggest that both Brcp and Rad51 get recruited to chromatin upon DSB induction and are therefore implicated in DSB repair in Dictyostelium. To further study Brcp function and based on findings suggesting that disruption of brcp might be lethal, I developed a novel system for specific and conditional depletion of endogenous Dictyostelium proteins. Utilizing this system, I conducted phenotypic studies in a strain depleted of Brcp to examine its role in DNA repair. Overall this study shows that the HR pathway in Dictyostelium shows great similarity to vertebrates, making Dictyostelium an appealing model for the study of DSB repair and specifically HR.
160

The role of DNA polymerase eta in determining cellular responses to chemo-radiation treatment

Nicolay, N. H. January 2013 (has links)
DNA polymerase η (pol η), a crucial component of the cellular translesion synthesis pathway, allows cells to bypass and thereby temporarily tolerate DNA damage. Inherited deficiency of pol η, as reported in the variant form of xeroderma pigmentosum, predisposes to UV light-induced skin cancers. To date, pol η is the only DNA polymerase shown to exhibit a causal link to the formation of cancers in humans. However, the role of pol η in the cellular response to forms of DNA damage other than UV-induced lesions is largely unknown. In the first part of this thesis, it is shown that cells deficient in pol η are resistant to ionising radiation. Deficiency in the polymerase was associated with accumulation of cells in S phase of the cell cycle. Cells deficient in pol η demonstrated increased homologous recombination-directed repair of DNA double-strand breaks created by ionising radiation, and depletion of the homologous recombination protein X-ray repair cross-complementing protein 3 (XRCC3), abrogated the radioresistance observed in pol η-deficient cells compared to pol η-complemented cells. These findings suggest that homologous recombination mediates S phase-dependent radioresistance associated with pol η-deficiency. In the second part of this thesis, it is shown that pol η-deficient cells have increased sensitivity to the chemotherapeutic compound, oxaliplatin, compared to pol η-deficient expressing cells, but not to the drug 5-fluorouracil that is usually administered in combination with oxaliplatin in the clinical setting. Despite the importance of pol η for cellular survival following exposure to oxaliplatin, the drug did not upregulate the enzyme after either short-term or long-term exposure. Inhibition of pol η activity by siRNA-mediated knockdown of the protein sensitised cells to oxaliplatin treatment, and partially reversed acquired resistance in oxaliplatin-resistant tumour cell lines. These data suggest that pol η is an interesting target whose function can potentially be interfered with to optimise oxaliplatin-based chemotherapy. In the third part of this thesis, clinical samples obtained from oesophageal cancer patients before and after treatment with oxaliplatin-containing chemotherapy were analysed for POLH mRNA levels encoding pol η protein. Malignant tissue specimens obtained before treatment demonstrated a significantly higher level of POLH mRNA than matched normal oesophageal tissue samples. Contrary to the preclinical data, high POLH mRNA expression before therapy was shown to correlate with increased overall and disease-free survival of the patient cohort in the clinical trial. Additionally, patients with high POLH mRNA-expressing cancers had better therapeutic responses (measured by PET-CT) to oxaliplatin-based treatment than those with low levels. These data suggest that POLH mRNA expression should be tested as a biomarker to predict survival and therapeutic responses in oesophageal cancer patients treated with oxaliplatin-containing chemotherapy.

Page generated in 0.0465 seconds