Spelling suggestions: "subject:"DNA polymerases"" "subject:"DNA polymerase's""
21 |
Studies on the Klenow fragment of Escherichia coli DNA polymerase IFurey, William Scott January 1998 (has links)
No description available.
|
22 |
Structural and mechanistic studies of Saccharomyces cerevisiae DNA polymerase αPerera, Rajika January 2013 (has links)
No description available.
|
23 |
Protein engineering of DNA polymerase I: thioredoxin dependent processivityChiu, Joyce, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2005 (has links)
DNA polymerases are found in a diverse range of organisms, prokaryotes, eukaryotes, viruses and bacteriophage. T7 DNA polymerase is a replicative enzyme from E. coli bacteriophage T7. It relies on the thioredoxin binding domain (TBD) of phage gene 5 protein (gp5) and E. coli thioredoxin (Trx) for processive replication of phage DNA. Although T7 DNA polymerase is processive, it is also thermolabile. In order to design a thermostable and processive DNA polymerase, the structural stabilities of the TBD and Trx were studied in respect to their binding affinity and affect on enzyme processivity. An artificial operon was designed for coexpression of subunits of T7 DNA polymerase. By means of a 9??His-tag at the amino terminus of gp5, T7 DNA polymerase complex was purified by one-step nickel-agarose chromatography, with subunits gp5 and Trx co-eluting in a one to one molar ratio. Purified T7 DNA polymerase was assayed for polymerase activity, processivity and residual activity and compared to the commercial T7 DNA polymerase. The two enzymes were not identical with commercial T7 DNA polymerase being less processive at 37??C. Mass spectrometry of the two enzymes identified a mutation of Phe102 to Ser in the Trx subunit (TrxS102) of commercial T7 DNA polymerase. The Ser102 mutation, was found near the carboxyl terminal helix of Trx. TrxS102 was less stable than wild type Trx. In the study of the TBD structural stability, a hybrid polymerase was constructed by inserting the TBD motif into the homologous position in the Stoffel fragment of Taq DNA polymerase. The hybrid enzyme was coexpressed with Trx from an artificial operon; however, the TBD inserted retained a mesophilic binding affinity to Trx. The chimeric polymerase required 100 molar excess of Trx for processive polymerase activity at 60??C. TBD structural deformation at elevated temperatures was hypothesized to be the cause of the change in the subunit stoichiometry. Mutagenesis of TBD would be required to increase its thermostability. An efficient, rapid high throughput mutagenesis method (SLIM) was invented and would be appropriate for further studies.
|
24 |
REV7-mediated polyubiquitination and degration of human REV1Chun, Chiu-shun., 秦超舜. January 2009 (has links)
published_or_final_version / Biochemistry / Doctoral / Doctor of Philosophy
|
25 |
Isolation and characterisation of a novel archaeal DNA polymeraseCooper, Christopher D. O. January 2012 (has links)
DNA replication is a key process required by organisms during cell division, with a concomitant requirement for genome synthesis by DNA polymerases. Biotechnological exploitation of thermostable DNA polymerases for DNA amplification by the Polymerase Chain Reaction (PCR), provides a significant market for novel enzymes or those with improved properties. An approach was taken to isolate alternative thermostable DNA polymerases, by enriching thermophilic bacteria from a novel thermal environment, aerobically spoiling silage. In addition, a novel DNA polymerase (Abr polBl) was cloned from the thermoacidophilic archaeon, Acidianus brierleyi, with the intention of characterising its in vivo role and application to PCR. Protein sequence analysis suggested a proofreading (high fidelity) DNA synthesis activity most related to polBl DNA polymerases from Crenarchaeota. Abr polBl was heterologously expressed in bacteria and protein purified to homogeneity. Biochemical assays confirmed high-temperature DNA polymerase and 3'-5'exonuclease activities of Abr polBl, with an accompanying proofreading ability. Sequence analysis, processivity, strand displacement and lesion bypass activities indicated potential roles in genome replication and DNA repair. Abr polBl could not amplify DNA under a range of PCR conditions, presumably following its low intrinsic thermostability. Biophysical analyses confirmed irreversible unfolding of Abr polBl at temperatures required for PCR. Supplementation with organic compounds and ionic salts stabilised Abr polBl, promoting retention of conformational stability and DNA synthesis activity following thermal incubation, but could not promote DNA amplification with Abr polB 1.
|
26 |
Kinetic studies of two error-prone DNA repair enzymes possible mechanisms for viral mutagenesis /Showalter, Alexander Keith. January 2002 (has links)
Thesis (Ph. D.)--Ohio State University, 2002. / Title from first page of PDF file. Document formatted into pages; contains xii, 97 p.; also contains graphics (some col.). Includes abstract and vita. Advisor: Ming-Daw Tsai, Dept. of Chemistry. Includes bibliographical references (p. 92-97).
|
27 |
Characterization and structural determination of metalloenzymes DNA polymerase beta, carboxypeptidase, and acetyl coenzyme-A decarbonylase/synthase /Arndt, Joseph W., January 2003 (has links)
Thesis (Ph. D.)--Ohio State University, 2003. / Title from first page of PDF file. Document formatted into pages; contains xxii, 172 p. : ill., some col. Includes abstract and vita. Advisor: Michael K. Chan, Dept. of Chemistry. Includes bibliographical references (p. 165-172).
|
28 |
The molecular basis of nucleotide recognition for T7 DNA polymeraseJin, Zhinan, 1972- 02 October 2012 (has links)
DNA replication demands extraordinary specificity and efficiency of catalysis from a DNA polymerase. Previous studies on several DNA polymerases suggested that a rate-limiting conformational change preceding chemistry accounts for the high specificity following the induced fit mechanism. However, the identity of this rate-limiting conformational change and how it contributes to the fidelity is still under debate. An important study of T7 DNA polymerase performed by Tsai and Johnson using a conformationally sensitive fluorophore (CSF) characterized a conformational change directly and presented a new paradigm for nucleotide selectivity. This thesis describes work to further characterize the underlying molecular basis regulating the conformational change by a combination of site-directed mutagenesis, transient kinetics and crystallography. One flexible segment (gly-ala-gly) within the fingers domain was mutated to (ala-alaala). The kinetic analysis on this mutant showed that the mutations decreased the forward rate of the conformational change reported by the fluorophore about 1200-fold but there was no significant change on the reverse rate. The data suggested that the movement of the fingers domain is not a rigid body motion but may be complex due to the movements of various helices within the fingers domain. Quantification of the kinetics of incorporation of correct and incorrect base pairs showed the decrease of fidelity mainly was from the decreased forward rate during correct nucleotide incorporation. The roles of three active site residues, K522, H506, and R518, which form polar interactions with [alpha]-,[beat]- and [gamma]-phosphates of the incoming nucleotide respectively, in conformational change and catalysis were also characterized. All the mutants showed a slower conformational change than the wild type enzyme. After this conformational change, there was a rate limiting step with a rate comparable to kpol measured by quench-flow experiments. Correct nucleotide binding caused an increase in fluorescence, suggesting that the conformational change of the fingers domain delivers incoming nucleotide to a misaligned status even for a correct nucleotide with each of the mutants. The data suggested that active site residues play important roles in maintaining a fast conformational change and an accurate alignment of the active site during correct nucleotide incorporation. Yellow crystals of CSF-labeled T7 DNA polymerase with DNA and correct nucleotide (closed complex), incorrect nucleotide (misaligned complex) or no nucleotide (open complex) were grown to good size and diffracted to 3 Å during X-ray data collection. The structures of these complexes are still under refinement. / text
|
29 |
A kinetic and biochemical approach to understanding the mechanisms of novel DNA polymerasesFiala, Kevin Andrew, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Full text release at OhioLINK's ETD Center delayed at author's request
|
30 |
African swine fever virus DNA polymerase X biophysical interaction studies and NMR assignments of the polymerase-deoxyguanosine triphosphate complex /Voehler, Markus Wolfgang. January 2007 (has links)
Thesis (Ph. D. in Chemistry)--Vanderbilt University, Dec. 2007. / Title from title screen. Includes bibliographical references.
|
Page generated in 0.0375 seconds