• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Benzimidazole Based Novel Ligands For Specific Recognition Of Duplex And G-Quadruplex DNA

Paul, Ananya 02 1900 (has links) (PDF)
The thesis entitled “Benzimidazole based Novel Ligands for Specific Recognition of Duplex and G-Quadruplex DNA” deals with the design, synthesis and modeling of several benzimidazole based molecules and their interaction with duplex and G-quadruplex DNA structures. It also elucidates the inhibition effect of the ligands on the activity of Topoisomerase I and Telomerase. The work has been divided into six chapters. Chapter 1. DNA Interacting Small Organic Molecules: Target for Cancer Therapy This first chapter presents an overview on the various types of small molecules that interact with duplex and G-quadruplex structures of DNA or interfere with the activity of DNA targeted enzymes like topoisomerase and telomerase. The importance of such molecules as chemotherapeutic agents is highlighted. Chapter 2. DNA Recognition: Conformational Switching of Duplex DNA by Mg2+ ion Binding to Ligand Bis-benzimidazoles like Hoechst 33258 are well known ligands that bind to duplex DNA (ds-DNA) minor grooves. Here a series of dimeric bisbenzimidazole based ligands in which two Hoechst units are connected via oxyethylene based hydrophilic [Ho-4ox-Ho (1), Ho-3ox-Ho (2)] or via hydrophobic oligomethylene [Ho-(CH2)8-Ho (3)](Figure 1) spacers have been synthesized. The aim of this investigation is to examine the binding property of these dimers on the ds-DNA to explore whether the variation in the length of the spacer has any effect on DNA binding properties particularly in presence of selected metal ions. The changes of individual dimers in DNA binding efficiency was studied in detail by fluorescence, circular dichroism spectral titrations and thermal denaturation experiment with selected duplex DNA formed from appropriate oligonucleotides. We have also examined the changes that occur in geometry of the molecules from linear to hairpin motif in presence of Mg2+ ion. A large difference was observed in [ligand]/ [DNA] ratio and binding efficiency with ds-DNA upon change in the ligand geometry from linear to hairpin motif. The experimental results were then substantiated using docking and molecular dynamics simulations using a model ds-DNA scaffold. Both experimental and theoretical studies indicate that the DNA binding is highly dependent on the spacer type and length between the two monomeric Hoechst units. The spacer length actually helps to achieve shape complimentarity with the double-helical DNA axis. Figure1: Chemical structures of the dimeric ligands Ho-4ox-Ho, Ho-3ox-Ho, Ho-(CH2)8-Ho and Hoechst 33258 (Ho) used in this study. Chapter 3. DNA Binding and Topoisomerase I Inhibiting Properties of New Benzimidazole Substituted Polypyridyl Ruthenium (II) Mixed-Ligand Complexes In this study, we have synthesized and fully characterized three new Ru(II) based polypyridyl and benzimidazole mixed complexes: (1) [Ru(bpy)2(PMI)], 2+ (2) [Ru(bpy)2(PBI)]2+ and (3) [Ru(bpy)2(PTI)]2+ (Figure 2) . The affinities of these complexes toward duplex DNA were investigated. In addition, the photocleavage reaction of DNA and topoisomerase I inhibition properties of these metal complexes were also studied. The DNA binding efficiency of individual complexes was studied in detail by absorbance, fluorescence spectral titrations and thermal denaturation experiment using natural calf-thymus DNA. Upon irradiation at 365 nm, all three Ru(II) complexes were found to promote the cleavage of plasmid DNA from negatively supercoiled to nicked circular and subsequently to linear DNA. The inhibition of topoisomerase I mediated by these Ru(II) complexes was also examined. These experiments demonstrate that each complex serves as an efficient inhibitor toward topoisomerase I and such inhibition activity is consistent with interference with the DNA religation step catalyzed by topoisomerase. Figure 2. Chemical structures of the metal complexes used in this present study. Chapter 4. Synthesis and Evaluation of a Novel Class of G-Quadruplex-Stabilizing small molecules based on the 1,3-Phenylene-bis (piperazinyl benzimidazole) syatem Achieving stabilization of telomeric DNA in the G-quadruplex conformation by various organic compounds is an important goal for the medicinal chemists seeking to develop new anticancer agents. Several compounds are known to stabilize the G-quadruplexes. However, relatively few are known to induce their formation and/or alter the topology of the pre-formed G-quadruplex DNA. Herein, four compounds having the 1,3-phenylene-bis(piperazinyl benzimidazole) (Figure 3) unit as a basic skeleton have been synthesized, and their interactions with the 24-mer telomeric DNA sequences from Tetrahymena thermophilia d(T2G4)4 have been investigated using high-resolution techniques such as circular dichroism (CD) spectropolarimetry, CD melting, emission spectroscopy, and polyacrylamide gel electrophoresis. The data obtained, in the presence of one of three ions (Li+, Na+ or K+), indicate that all the new compounds have a high affinity for G-quadruplexDNA, and the strength of the binding with G-quadruplex depends on (i) phenyl ring substitution, (ii) the piperazinyl side chain, and (iii) the type of monovalent cation present in the buffer. Results further suggest that these compounds are able to abet the conversion of the intramolecular G-quadruplex DNA into parallel stranded intermolecular G-quadruplex DNA. Notably, these compounds are also capable of inducing and stabilizing the parallel stranded G-quadruplex DNA from randomly structured DNA in the absence of any stabilizing cation. The kinetics of the structural changes induced by these compounds could be followed by recording the changes in the CD signal as a function of time. Figure 3. Chemical structures of the ligands used in this study. Chapter 5A. The Spacer Segment in the Dimeric 1,3-phenylene-bis (piperazinyl benzimidazole) has a Dramatic Influence on the Binding and Stabilization of Human Telomeric G-Quadruplex DNA Ligand-induced stabilization of G-quadruplex structures formed by human telomeric DNA is an active area of basic and clinical research. The compounds which stabilize the G-quadruplex structures lead to suppression of telomerase activity. Herein, we present the interaction of a series of monomeric and dimeric compounds having 1,3-phenylene-bis(piperazinyl benzimidazole) (Figure 4) as basic pharmacophore unit with G-quadruplex DNA formed by human telomeric repeat d[(G3T2A)3G3]. These new compounds provide an excellent stabilization property to the pre-formed G-quadruplex DNA in the presence of one of three ions (100 mM Li+, Na+ or K+ ions). Also the G-quadruplex DNA formed in the presence of low concentrations of ligands in 100 mM K+, adopts a parallel-stranded conformation which attains an unusual thermal stability. The dimeric ligands having oxyethylene based spacer provide much higher stability to the pre-formed G-quadruplex DNA and the G-quadruplexes formed in presence of the dimeric compounds than the corresponding monomeric counterparts. Consistent with the above observation, the dimeric compounds exert significantly higher telomerase inhibition activity than the monomeric compounds. The ligand induced G-quadruplex DNA complexes were further investigated by computational molecular modeling, which provide useful information on their structure-activity relationship. Figure 4. Chemical structures of the monomeric and dimeric ligands used in this study. Chapter 5B. Role of Spacer in Symmetrical Gemini bisbenzimidazole based Ligands on the Binding and Stabilization of Dimeric G-Quadruplex DNA derived from Human Telomeric Repeats The design and development of anticancer agents that act via stabilization of the telomeric G-quadruplex DNA is an active area of research because of its importance in the negative regulation of telomerase activity. Several classes of G-quadruplex DNA binding ligands have been developed so far, but they mainly act on the DNA sequences which are capable of forming a single Gquadruplex unit. In the present work, we have developed few new dimeric (Gemini) bisbenzimidazole ligands (Figure 5), in which the spacer joining the two bisbenzimidazole units have been varied using oligooxyethylene units of different length. Herein we show the interaction of each of these ligands, with the G-quadruplex DNA, derived from oligodeoxynucleotides d(T2AG3)4 and d(T2AG3)8, which fold into a monomeric and dimeric (having two folded G-tetrad units) G-quadruplex DNA, respectively. We also present evidence that the G-quadruplex DNA structure formed by these sequences in K+ solution in presence of the ligands is parallel, with unusual stability, and the spacer length between the two bisbenzimidazole units has critical role on the G-quadruplex stability, particularly on the G-quadruplex structures formed by the 48-mer sequence. The computational aspects of the ligand-G-quadruplex DNA association have also been analyzed. Interestingly, the gemini ligand having longer spacer was highly potent in the inhibition of telomerase activity than the corresponding gemini ligands having shorter spacer or the monomeric ligand. Also, the dimeric ligands are more cytotoxic toward the cancer cells than normal cells. Figure 5. Chemical structures of the monomeric and gemini ligands used in this study. Chapter 6. Stabilization and Structural Alteration of G-Quadruplex DNA made from Human Telomeric Repeat Mediated by Novel Benzimidazole Derivatives based on Tröger’s Base Ligand-induced stabilization of G-quadruplex formation by the telomeric DNA single stranded 3'-overhang is a nice strategy to inhibit telomerase from catalyzing telomeric DNA synthesis and form capping telomeric ends. Herein we present the first report of the interactions of two novel bisbenzimidazoles (TBBz1 and TBBz2)(Figure 6) based on the Tröger’s base skeleton with the G-quadruplex DNA. These molecules stabilize the G-quadruplex DNA derived from a human telomeric sequence. Significantly strong binding affinity of these molecules to G-quadruplex DNA relative to duplex DNA was observed by CD spectroscopy, thermal denaturation and UV-vis titration studies. The above results obtained are in excellent agreement with the biological activity, measured in vitro using a modified TRAP assay. Additionally exposure of cancer cells to these compounds showed a remarkable decrease in the population growth. Also, it has been observed that the ligands are selectively more cytotoxic toward the cancerous cells than the corresponding noncancerous cells. To understand further, the ligand-G-quadruplex DNA complexes were investigated by computational molecular modeling. This provided additional insights on the structure activity relationship. Computational studies suggest that the adaptive scaffold not only allows these ligands to occupy the G-quartet but also binds with the grooves of the G-quadruplex DNA. Figure 6. Chemical structures of the ligands, TBBz1 and TBBz2 used in this study, (For structural formula pl see the abstact.pdf file.)
12

Functional Analysis Of Unique Motifs In Dimeric EcoP151 DNA Methyltransferase

Madhusoodanan, U K 06 1900 (has links)
Restriction endonucleases occur ubiquitously among bacteria, archaea and in viruses of certain unicellular algae, and they are usually accompanied by a modification enzyme of identical specificity; together, the two activities form a restriction-modification (R-M) system- the prokaryotic equivalent of an immune system. More than 3,800 R-M enzymes have been characterized so far and they manifest 262 unique recognition specificities. These enzymes represent the largest family of functionally related enzymes. Based on the number and organization of subunits, cofactor requirements, catalytic mechanism, and sequence specificity, restriction enzymes have been classified into different types, Types I, II, III, and IV. R-M systems are important model systems for studying highly specific DNA-Protein interactions and serve as excellent systems for investigating structure-function relationship and for understanding the evolution of functionally similar enzymes with highly dissimilar sequence. In bacteria, DNA methyltransferases (MTases) associated with R-M systems protects the host DNA from cleavage by the cognate restriction endonuclease recognizing the same sequence and provides the integrity of host cell genome against foreign DNA invasion. The modification MTases catalyses the addition of a methyl group to one nucleotide in each strand of the recognition sequence using S-adenosyl-L-methionine (AdoMet) as the methyl group donor. Based on the chemistry of the methylation reaction catalyzed, DNA MTases are classified as C5 enzymes (endocyclic MTases), which transfer the methyl group to C5 position of cytosine, and N6 and N4 enzymes (exocyclic amino MTases), which transfer the methyl group to the exocyclic amino group of adenine or cytosine, respectively. DNA MTases of all three types contain conserved regions, which are responsible for catalysis and AdoMet binding, and variable regions known as target recognition domains (TRD), which determine the substrate specificity of a particular enzyme. Ten conserved amino acid motifs (I–X) are found in C5 MTases. Exocyclic DNA MTases are subdivided further into six groups (namely α, β, γ, ζ, δ and ε), according to the linear arrangements of three conserved motifs, the AdoMet-binding domain (FXGXG), the TRD (target recognition domain) and the catalytic domain (D/N/S)PP(Y/F). Base flipping has been proposed as a general mechanism used by all MTases in which the target base to be methylated is rotated 180º out of the DNA into a catalytic domain (motif IV). EcoP15I restriction enzyme (R.EcoP15I) belongs to the Type III restriction-modification (R-M) family. These enzymes are composed of two subunits, Res (Restriction) and Mod (Modification). The Mod subunit alone functions as a DNA methyltransferase in presence of AdoMet and magnesium and determines the specificity for restriction and methylation, whereas restriction activity requires the cooperation of both the Res and Mod subunits. EcoP15I methyltransferase (M.EcoP15I), a homodimeric enzyme catalyzes the transfer of a methyl group from AdoMet to the second adenine residue in the recognition sequence, 5’-CAGCAG-3’, in presence of magnesium ions. M.EcoP15I belongs to the β-subfamily of N6-adenine methyltransferases. In addition to the two highly conserved sequence motifs, FXGXG (motif 1) involved in AdoMet binding and DPPY (motif IV) involved in catalysis, the amino acid residues of the region 355-377 contains a PD(X)n(D/E)XK-like motif involved in metal binding. A Mutation in the Mod Subunit of EcoP15I Restriction Enzyme Converts the DNA Methyltransferase to a Site-Specific Endonuclease An interesting aspect of M.EcoP15I is that the methylation requires magnesium and magnesium binding to the PD(X)n(D/E)XK-like motif participates in base flipping. The PD-(D/E)XK superfamily of Mg2+-dependent nucleases were initially identified in structurally characterized Type II REases and later found in many enzymes involved in DNA replication, recombination and repair. The charged residues from the catalytic triads are implicated in metal ion mediated DNA cleavage. In EcoP15I DNA methyltransferase, a PD(X)n(D/E)XK like motif is present in which the partially conserved proline is replaced by methionine (MD(X)18(D/E)XK). Using site-directed mutagenesis methionine at 357 was changed to proline (M357P), which resulted in the formation of a Mg2+ binding/catalytic motif similar to several Mg2+-dependent endonucleases. Substitution of methionine at position 357 by proline converts EcoP15I DNA methyltransferase to a site-specific endonuclease. The mutant protein specifically binds to the recognition sequence 5’-CAGCAG-3’ and cleaves DNA in presence of Mg2+. The engineered EcoP15I-M357P is an active, sequence-dependent restriction endonuclease that cleaves DNA 10/1 nucleotide away from its recognition sequence in the presence of Mg2+. Unlike the holoenzyme, R.EcoP15I, the engineered endonuclease neither requires AdoMet or ATP nor requires two sites in the inverted orientation for DNA cleavage. It is of potential interest to use such an engineered enzyme as a genetic manipulation tool. Dimerisation of EcoP15I DNA Methyltransferase is Required for Sequence Recognition and Catalysis In the cell, after each round of replication, substrate for any DNA MTase is hemimethylated DNA and therefore, only a single methylation event restores the fully methylated state. This is in agreement with the fact that most of the DNA MTases studied exist as monomers in solution. The peculiar feature of M.EcoP15I is that it methylates only one strand of the DNA, at the N6-position of the adenine residue. Earlier studies using gel filtration and glutaraldehyde cross-linking demonstrated that M.EcoP15I exists as dimer in solution. However, the significance of dimerisation in the reaction mechanism of EcoP15I MTase is not clear. Therefore, experiments have been performed to determine whether M.EcoP15I could function as a monomer and the significance of dimerisation, if any, in catalysis. Towards this a homology model of the M.EcoP15I was generated by “FRankenstein monster” approach. Residues D223, V225, and V392, the side chains of which are present in the putative dimerisation interface in the model were targeted for site-directed mutagenesis. These residues were mutated to lysine and their importance was studied. Methylation and in vitro restriction assays showed that the triple mutant was catalytically inactive. Interestingly, the mutations resulted in weakening of the interaction between the monomers leading to both monomeric and dimeric species. M.EcoP15I was inactive in the monomeric form and therefore, dimerisation might be the initial step in its function. This must be required for positioning of the target base of the DNA in the active-site pocket of the M.EcoP15I. A part of this interface may be involved in site-specific DNA binding. Dimerisation of M.EcoP15I is, therefore, a prerequisite for the high-affinity substrate binding needed for efficient catalysis. Understanding the role(s) of Amino and Carboxyl-terminal Domains of EcoP15I DNA Methyltransferase in DNA Recognition and Catalysis N-terminal and C- terminal domains (NTD and CTD) of proteins are known to play many important roles such as folding, stability, dimerisation, regulation of gene expression, enzyme activity and substrate binding. From the modeled dimeric structure of M.EcoP15I, it was hypothesized that N- and C-termini are in close proximity with each other. In addition, it was predicted that each monomer can bind to AdoMet and DNA. Towards understanding the role(s) of the N- and C-terminal domains of M.EcoP15I in its structure and function, N-, and C-terminal deletions were created. Interestingly, deletion of N-terminal 53 amino acids and C-terminal 127 amino acids from of EcoP15I MTase converted the dimeric enzyme to a stable, monomeric protein that was structurally stable but enzymatically inactive. Each monomer could bind single-stranded DNA but dimerisation was required for double-stranded DNA binding and methylation. This indicated that amino acids at the N- and C-termini are important for maintaining a proper dimeric structure for M.EcoP15I functions. Therefore, it can be proposed that in a complex three-dimensional structure, the NTD and CTD should be properly maintained in order to execute its function, including dimerisation and DNA binding. However, since the 3D structure of M.EcoP15I has not yet been determined, the biochemical, biophysical and bioinformatics approaches may serve to provide useful information on the relative contributions of the electrostatic forces and hydrophobic contacts to the structural stability. Understanding the structural organization and folding of M.EcoP15I is crucial to elucidation of the mechanism of action.
13

Mécanisme moléculaire de reconnaissance et de clivage du génome chez le bactériophage SPP1, un virus à ADN double-brin / Molecular mechanisms of recognition and cleavage of the genome of bacteriophage SPP1, a double-stranded DNA virus

Djacem, Karima 08 December 2016 (has links)
La reconnaissance spécifique du génome viral et son encapsidation est une étape cruciale pour l’assemblage de particules virales. Chez SPP1, comme chez d’autres bactériophages à queue, le moteur moléculaire qui encapside le génome viral est composé de la terminase, une enzyme hétéro-oligomérique qui possède une activité ATPasique et nucléasique, et de la protéine portale, un oligomère cyclique par lequel l’ADN viral est transloqué. Dans un grand nombre de ses virus, l’encapsidation de l’ADN est initiée par la reconnaissance et le clivage d’une séquence spécifique nommée « pac ». C’est un évènement qui se produit une seule fois au début d’une série de cycles d’encapsidation processive à partir d’un concatémère issu de la réplication du génome du phage. La région pac de SPP1 contient deux séquences (pacL et pacR) où TerS (gp1) se lie entourant la région (pacC) où TerL (gp2) coupe l’ADN de SPP1.Ici, nous montrons qu’une région de la séquence pacL et qu’un motif polyadénine de pacR agissent ensemble pour promouvoir le clivage en pacC. La dégénération de la région pacC n’a pas montré d’effet sur que le clivage endonucléolytique qui a lieu à une position bien définie de pacC avec une précision de ~6 pb. Des études avec des phages proches de SPP1 ont montré une conservation dans la position du clivage, malgré des variations dans pacC, pacR ou dans la distance entre pacL et pacC. Les données sont compatibles avec un modèle dans lequel TerS interagit spécifiquement avec la région pacL, sur laquelle le multimère cyclique TerS doit s’enrouler, et le motif polyadénine de la région pacR. Le complexe nucléoprotéique résultant va créer un contexte structural qui permet de recruter et positionner le domaine nucléase de TerL pour une coupure très précise sur pacC sans spécificité de séquence. / The specific recognition of the viral genome and its packaging is a critical step in viral particle assembly. In SPP1, as in many tailed bacteriophages, the macromolecular motor that encapsidates viral DNA is composed of terminase, a hetero-oligomeric enzyme possessing ATPase and nuclease activities, and of portal protein, a cyclic oligomer through which DNA is translocated. In a large number of these viruses, DNA packaging is initiated by recognition and cleavage of a specific sequence pac. This event occurs once at the beginning of a series of processive encapsidation events along a substrate concatemer of replicated phage genomes. The SPP1 pac region has two sequences where TerS (gp1) binds (pacL and pacR) flanking the segment where TerL (gp2) cleaves the SPP1 DNA (pacC). Here we show that a sequence segment of pacL and a poly-adenine motif in pacR act together to promote cleavage at pacC. Extensive degeneration of pacC sequence has no detectable effect in pac cleavage. The endonucleolytic cut occurs at a defined position with a precision of ~6 bp. Studies with SPP1-related phages show conservation of the cut position, irrespectively of sequence variation in pacC, in pacR or changes in pacL-pacC distance. The data is compatible with a model in which TerS interacts specifically with a region of pacL that probably wraps around the TerS cyclical multimer, and a poly-A tract in pacR. The resulting nucleoprotein complex architecture positions TerL for accurate cleavage at pacC without specific sequence requirement.
14

MAMMALIAN TESTIS-DETERMINING FACTOR SRY HAS EVOLVED TO THE EDGE OF AMBIGUITY

Chen, Yen-Shan 23 August 2013 (has links)
No description available.
15

從生物辨識應用探討隱私權之保護 / The privacy protection issues of biometric application

游璿樺, Yu, Hsuan Hua Unknown Date (has links)
自從美國911恐怖攻擊事件後,生物辨識技術受到世界各國重視,使得生物辨識應用大鳴大放,涵蓋範圍非常廣泛,從國家的入出境管理、國民身分證,到公司或住家的門禁管理、安全監控,乃至於個人身分確認,如電腦開機登錄、隨身碟資料加密。然而生物辨識應用,會涉及個人生物特徵之蒐集與相關個人資料之運用,一方面為生活上帶來便利,另一面也無聲無息為個人隱私帶來衝擊與威脅。本文從生物辨識技術之研究,藉由分析指紋辨識、臉型辨識及DNA辨識之應用所引發的隱私權問題,以及相關法令規範之探討,最後從法制面、政策面與執行面上提供建議,希望藉由完備的法令規範,評估各種應用可能引發之隱私爭議,建立完善的管理制度與監督機制,將生物辨識應用之隱私侵害與疑慮降到最低,得以享受生物辨識應用所帶來的安全性與方便性。
16

Dysregulácia imunitnej odpovede u diabetu mellitu 1. typu / Immune system dysregulation in type 1 diabetes

Paračková, Zuzana January 2021 (has links)
Type 1 diabetes (T1D) is an autoimmune disease with multifactorial aetiology that involves an attack of self-reactive cytotoxic CD8 lymphocytes on insulin-producing beta cells in the pancreas. In the T1D pathophysiology, both innate and adaptive immunity mechanisms cooperate in the development of inflammation leading to autoimmune destruction. Autoreactive T lymphocytes are the canonical destructors of the beta cells, and B cells produce autoantibodies; the innate immunity cells are considered the initiators of the pathological autoimmune reaction by promoting T and B cell activation. Here, we provide evidence of both innate and adaptive immunity cell types dysregulation in patients with T1D, and that these changes occur before the onset of the disease. The changes in T regulatory lymphocytes (Tregs) and B cell subpopulations occur already in asymptomatic T1D first-degree relatives. During the first year after the onset of the disease, there is a gradual decrease in the neutrophil numbers in the periphery, which probably infiltrate the pancreas. We have focused more closely on the innate immunity dysregulation and its contribution to T1D pathogenesis. Initially, we describe that neutrophil products called neutrophil extracellular traps (NETs) are able to induce IFNγ-producing T cells through...

Page generated in 0.4955 seconds