• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DNA Unwinding by Helicases Investigated on the Single Molecule Level

Klaue, Daniel 01 November 2012 (has links) (PDF)
Each organism has to maintain the integrity of its genetic code, which is stored in its DNA. This is achieved by strongly controlled and regulated cellular processes such as DNA replication, -repair and -recombination. An essential element of these processes is the unwinding of the duplex strands of the DNA helix. This biochemical reaction is catalyzed by helicases that use the energy of nucleoside triphophate (NTP) hydrolysis. Although all helicases comprise highly conserved domains in their amino acid sequence, they exhibit large variations regarding for example their structure, their function and their target nucleic acid structures. The main objective of this thesis is to obtain insight into the DNA unwinding mechanisms of three helicases from two different organisms. These helicase vary in their structures and are involved in different pathways of DNA metabolism. In particular the replicative, hexameric helicase Large Tumor-Antigen (T-Antigen) from Simian virus 40 and the DNA repair helicases RecQ2 and RecQ3 from Arabidopsis thaliana are studied. To observe DNA unwinding by these helicases in real-time on the single molecule level, a biophysical technique, called magnetic tweezers, was applied. This technique allows to stretch single DNA molecules attached to magnetic particles. Simultaneously one can measure the DNA end-to-end distance. Special DNA hairpin templates allowed to characterize different parameters of the DNA unwinding reaction such as the unwinding velocity, the length of unwound DNA (processivity) or the influence of forces. From this mechanistic models about the functions of the helicases could be obtained. T-Antigen is found to be one of the slowest and most processive helicases known so far. In contrast to prokaryotic helicases, the unwinding velocity of T-Antigen shows a weak dependence on the applied force. Since current physical models for the unwinding velocity fail to describe the data an alternative model is developed. The investigated RecQ helicases are found to unwind and close short stretches of DNA in a repetitive fashion. This activity is shown for the first time under external forces. The experiments revealed that the repetitive DNA unwinding is based on the ability of both enzymes to switch from one single DNA strand to the other. Although RecQ2 and RecQ3 perform repetitive DNA unwinding, both enzymes differ largely in the measured DNA unwinding properties. Most importantly, while RecQ2 is a classical helicase that unwinds DNA, RecQ3 mostly rewinds DNA duplexes. These different properties may reflect different specific tasks of the helicases during DNA repair processes. To obtain high spatial resolution in DNA unwinding experiments, the experimental methods were optimized. An improved and more stable magnetic tweezers setup with sub-nanometer resolution was built. Additionally, different methods to prepare various DNA templates for helicase experiments were developed. Furthermore, the torsional stability of magnetic particles within an external field was investigated. The results led to selection rules for DNA-microsphere constructs that allow high resolution measurements. / Jeder Organismus ist bestrebt, die genetischen Informationen intakt zu halten, die in seiner DNA gespeichert sind. Dies wird durch präzise gesteuerte zelluläre Prozesse wie DNA-Replikation, -Reparatur und -Rekombination verwirklicht. Ein wesentlicher Schritt ist dabei das Entwinden von DNA-Doppelsträngen zu Einzelsträngen. Diese chemische Reaktion wird von Helikasen durch die Hydrolyse von Nukleosidtriphosphaten katalysiert. Obwohl bei allen Helikasen bestimmte Aminosäuresequenzen hoch konserviert sind, können sie sich in Eigenschaften wie Struktur, Funktion oder DNA Substratspezifität stark unterscheiden. Gegenstand der vorliegenden Arbeit ist es, die Entwindungsmechanismen von drei verschieden Helikasen aus zwei unterschiedlichen Organismen zu untersuchen, die sich in ihrer Struktur sowie ihrer Funktion unterscheiden. Es handelt sich dabei um die replikative, hexamerische Helikase Large Tumor-Antigen (T-Antigen) vom Simian-Virus 40 und die DNA-Reparatur-Helikasen RecQ2 und RecQ3 der Pflanze Arabidopsis thaliana. Um DNA-Entwindung in Echtzeit zu untersuchen, wird eine biophysikalische Einzelmolekültechnik, die \"Magnetische Pinzette\", verwendet. Mit dieser Technik kann man ein DNA-Molekül, das an ein magnetisches Partikel gebunden ist, strecken und gleichzeitig dessen Gesamtlänge messen. Mit speziellen DNA-Konstrukten kann man so bestimmte Eigenschaften der Helikasen bei der DNA-Entwindung, wie z.B. Geschwindigkeit, Länge der entwundenen DNA (Prozessivität) oder den Einfluß von Kraft, ermitteln. Es wird gezeigt, dass T-Antigen eine der langsamsten und prozessivsten Helikasen ist. Im Gegensatz zu prokaryotischen Helikasen ist die Entwindungsgeschwindigkeit von T-Antigen kaum kraftabhängig. Aktuelle Modelle sagen dieses Verhalten nicht vorraus, weshalb ein alternatives Modell entwickelt wird. Die untersuchten RecQ-Helikasen zeigen ein Entwindungsverhalten bei dem permanent kurze Abschnitte von DNA entwunden und wieder zusammengeführt werden. Dieses Verhalten wird hier zum ersten Mal unter dem Einfluß externer Kräfte gemessen. Es wird gezeigt, dass die permanente Entwindung auf die Fähigkeit beider Helikasen, von einem einzelen DNA-Strang auf den anderen zu wechseln, zurückzuführen ist. Obwohl RecQ2 und RecQ3 beide das Verhalten des permanenten Entwindens aufzeigen, unterscheiden sie sich stark in anderen Eigenschaften. Der gravierendste Unterschied ist, dass RecQ2 wie eine klassische Helikase die DNA entwindet, während RecQ3 eher bestrebt ist, die DNA-Einzelstränge wieder zusammenzuführen. Die unterschiedlichen Eigenschaften könnten die verschieden Aufgaben beider Helikasen während DNA-Reparaturprozessen widerspiegeln. Weiterhin werden die experimentellen Methoden optimiert, um möglichst hohe Auflösungen der Daten zu erreichen. Dazu zählen der Aufbau einer verbesserten und stabileren \"Magnetischen Pinzette\" mit sub-nanometer Auflösung und die Entwicklung neuer Methoden, um DNA Konstrukte herzustellen. Außerdem wird die Torsions\\-steifigkeit von magnetischen Partikeln in externen magnetischen Feldern untersucht. Dabei finden sich Auswahlkriterien für DNA-gebundene magnetische Partikel, durch die eine hohe Auflösung erreicht wird.
2

DNA Unwinding by Helicases Investigated on the Single Molecule Level

Klaue, Daniel 06 September 2012 (has links)
Each organism has to maintain the integrity of its genetic code, which is stored in its DNA. This is achieved by strongly controlled and regulated cellular processes such as DNA replication, -repair and -recombination. An essential element of these processes is the unwinding of the duplex strands of the DNA helix. This biochemical reaction is catalyzed by helicases that use the energy of nucleoside triphophate (NTP) hydrolysis. Although all helicases comprise highly conserved domains in their amino acid sequence, they exhibit large variations regarding for example their structure, their function and their target nucleic acid structures. The main objective of this thesis is to obtain insight into the DNA unwinding mechanisms of three helicases from two different organisms. These helicase vary in their structures and are involved in different pathways of DNA metabolism. In particular the replicative, hexameric helicase Large Tumor-Antigen (T-Antigen) from Simian virus 40 and the DNA repair helicases RecQ2 and RecQ3 from Arabidopsis thaliana are studied. To observe DNA unwinding by these helicases in real-time on the single molecule level, a biophysical technique, called magnetic tweezers, was applied. This technique allows to stretch single DNA molecules attached to magnetic particles. Simultaneously one can measure the DNA end-to-end distance. Special DNA hairpin templates allowed to characterize different parameters of the DNA unwinding reaction such as the unwinding velocity, the length of unwound DNA (processivity) or the influence of forces. From this mechanistic models about the functions of the helicases could be obtained. T-Antigen is found to be one of the slowest and most processive helicases known so far. In contrast to prokaryotic helicases, the unwinding velocity of T-Antigen shows a weak dependence on the applied force. Since current physical models for the unwinding velocity fail to describe the data an alternative model is developed. The investigated RecQ helicases are found to unwind and close short stretches of DNA in a repetitive fashion. This activity is shown for the first time under external forces. The experiments revealed that the repetitive DNA unwinding is based on the ability of both enzymes to switch from one single DNA strand to the other. Although RecQ2 and RecQ3 perform repetitive DNA unwinding, both enzymes differ largely in the measured DNA unwinding properties. Most importantly, while RecQ2 is a classical helicase that unwinds DNA, RecQ3 mostly rewinds DNA duplexes. These different properties may reflect different specific tasks of the helicases during DNA repair processes. To obtain high spatial resolution in DNA unwinding experiments, the experimental methods were optimized. An improved and more stable magnetic tweezers setup with sub-nanometer resolution was built. Additionally, different methods to prepare various DNA templates for helicase experiments were developed. Furthermore, the torsional stability of magnetic particles within an external field was investigated. The results led to selection rules for DNA-microsphere constructs that allow high resolution measurements. / Jeder Organismus ist bestrebt, die genetischen Informationen intakt zu halten, die in seiner DNA gespeichert sind. Dies wird durch präzise gesteuerte zelluläre Prozesse wie DNA-Replikation, -Reparatur und -Rekombination verwirklicht. Ein wesentlicher Schritt ist dabei das Entwinden von DNA-Doppelsträngen zu Einzelsträngen. Diese chemische Reaktion wird von Helikasen durch die Hydrolyse von Nukleosidtriphosphaten katalysiert. Obwohl bei allen Helikasen bestimmte Aminosäuresequenzen hoch konserviert sind, können sie sich in Eigenschaften wie Struktur, Funktion oder DNA Substratspezifität stark unterscheiden. Gegenstand der vorliegenden Arbeit ist es, die Entwindungsmechanismen von drei verschieden Helikasen aus zwei unterschiedlichen Organismen zu untersuchen, die sich in ihrer Struktur sowie ihrer Funktion unterscheiden. Es handelt sich dabei um die replikative, hexamerische Helikase Large Tumor-Antigen (T-Antigen) vom Simian-Virus 40 und die DNA-Reparatur-Helikasen RecQ2 und RecQ3 der Pflanze Arabidopsis thaliana. Um DNA-Entwindung in Echtzeit zu untersuchen, wird eine biophysikalische Einzelmolekültechnik, die \"Magnetische Pinzette\", verwendet. Mit dieser Technik kann man ein DNA-Molekül, das an ein magnetisches Partikel gebunden ist, strecken und gleichzeitig dessen Gesamtlänge messen. Mit speziellen DNA-Konstrukten kann man so bestimmte Eigenschaften der Helikasen bei der DNA-Entwindung, wie z.B. Geschwindigkeit, Länge der entwundenen DNA (Prozessivität) oder den Einfluß von Kraft, ermitteln. Es wird gezeigt, dass T-Antigen eine der langsamsten und prozessivsten Helikasen ist. Im Gegensatz zu prokaryotischen Helikasen ist die Entwindungsgeschwindigkeit von T-Antigen kaum kraftabhängig. Aktuelle Modelle sagen dieses Verhalten nicht vorraus, weshalb ein alternatives Modell entwickelt wird. Die untersuchten RecQ-Helikasen zeigen ein Entwindungsverhalten bei dem permanent kurze Abschnitte von DNA entwunden und wieder zusammengeführt werden. Dieses Verhalten wird hier zum ersten Mal unter dem Einfluß externer Kräfte gemessen. Es wird gezeigt, dass die permanente Entwindung auf die Fähigkeit beider Helikasen, von einem einzelen DNA-Strang auf den anderen zu wechseln, zurückzuführen ist. Obwohl RecQ2 und RecQ3 beide das Verhalten des permanenten Entwindens aufzeigen, unterscheiden sie sich stark in anderen Eigenschaften. Der gravierendste Unterschied ist, dass RecQ2 wie eine klassische Helikase die DNA entwindet, während RecQ3 eher bestrebt ist, die DNA-Einzelstränge wieder zusammenzuführen. Die unterschiedlichen Eigenschaften könnten die verschieden Aufgaben beider Helikasen während DNA-Reparaturprozessen widerspiegeln. Weiterhin werden die experimentellen Methoden optimiert, um möglichst hohe Auflösungen der Daten zu erreichen. Dazu zählen der Aufbau einer verbesserten und stabileren \"Magnetischen Pinzette\" mit sub-nanometer Auflösung und die Entwicklung neuer Methoden, um DNA Konstrukte herzustellen. Außerdem wird die Torsions\\-steifigkeit von magnetischen Partikeln in externen magnetischen Feldern untersucht. Dabei finden sich Auswahlkriterien für DNA-gebundene magnetische Partikel, durch die eine hohe Auflösung erreicht wird.

Page generated in 0.0601 seconds