• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 7
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional Characterization of IGHMBP2, the Disease Gene Product of Spinal Muscular Atrophy with Respiratory Distress Type 1 (SMARD1) / Funktionelle Charakterisierung vom IGHMBP2, des Krankheitgenproduktes der Spinalen Muskelatrophie mit Atemnot Typ 1

Handoko, Lusy Lusiana January 2007 (has links) (PDF)
Spinale Muskelatrophie mit Atemnot Type 1 (SMARD1) ist eine autosomal rezessive, neurodegenerative Erkrankung, die sich häufig schon im Säuglings- und Kleinkindalter manifestiert. Pathologisches Merkmal von SMARD1 ist eine frühe und akut einsetzende Atemnot und eine progrediente, zunächst distal betonte Muskelschwäche, die durch eine Lähmung des Zwerchfells und der Skelettmuskulatur aufgrund des Absterbens der motorischen Vordernhornzellen des Rückenmarks eintritt. SMARD1 ist eine monogene Krankheit, die durch Mutationen im Gen für das Immunoglobulin µ-bindende Protein 2“ (IGHMBP2) hervorgerufen wird. Obwohl Mutationen in IGHMBP2 ausschließlich die Degeneration von Motoneuronen auslösen, ist das Gen bei Menschen und Mäusen ubiquitär exprimiert. Deshalb scheint SMARD1 durch den Defekt eines „Haushaltsproteins“ statt eines Neuron-spezifischen Faktors verursacht zu werden. IGHMBP2 verfügt über eine N-terminale DEXDc-Helicase/ATPase-Domäne und gehört zur Superfamily 1 Helicase. Bislang war lediglich bekannt, dass das Protein in verschiedenen zellulären Aktivitäten wie DNA Replikation, Transkription und prä-mRNA Splicing zugewiesen wurde. Die präzise Funktion von IGHMBP2 in den obengenannten Prozessen, und damit auch die molekulare Ursache von SMARD1 sind jedoch noch völlig unklar. Das Ziel der vorliegenden Arbeit war es daher, das IGHMBP2 Protein sowohl enzymatisch zu charakterisieren als auch den Prozess zu identifizieren, in dem dieses Protein in vivo agiert. Mit diesem Wissen sollten dann pathogene Mutanten von IGHMBP2 auf Defekte hin untersucht werden. Ein Schlüssel für diese Arbeit war die Gewinnung von rekombinantem, biologisch aktivem IGHMBP2 durch eine zweistufige Aufreinigungsstrategie. Dieses hochreine Enzym zeigte eine ATP-abhängige Helikaseaktivität, die sowohl doppelsträngige DNA als auch RNA mit einer 5’→3’ Direktionalität entwindet. Interessanterweise zeigte sich, dass dieses Enzym -im Gegensatz zu früheren Befunden- nahezu ausschließlich im Zytoplasma von Zellen lokalisiert ist. Darüber hinaus wiesen die Affinitätsaufreinigungsexperimente und Grossenfraktionierungsuntersuchungen daraufhin, dass IGHMBP2 ein Bestandteil des RNase-empfindlichen Komplexes ist, der als Ribosomen identifiziert wurde. IGHMBP2 interagiert primär mit 80S Monosomen, wobei das Protein mit beiden Untereinheiten in Kontakt steht. Hingegen ist IGHMBP2 an Polysomen nur in geringen Mengen zu finden. Diese Befunde deuten stark auf eine Rolle von IGHMBP2 bei der mRNA Verarbeitung am Ribosom hin, wobei noch unklar ist, ob es sich um translationsrelevante Prozesse handelt oder die mRNA-Stabilität beeinflusst. Die biochemische und enzymatische Charakterisierung von IGHMBP2 erlaubte erstmals Einblicke in den Pathomechanismus von SMARD1. In den folgenden Untersuchungen wurden die enzymatischen Aktivitäten der SMARD1-erregenden Ighmbp2 Mutante und ihre Assoziation mit ribosomalen Untereinheiten nachgeforscht. Interessanterweise konnten pathogene Missense-Mutanten von IGHMBP2 noch genauso gut wie das Wildtyp-Protein mit ribosomalen Untereinheiten wechselwirken. Jedoch inhibierten alle bisher getesteten Mutanten die RNA Helikaseaktivität, allerdings über unterschiedliche Mechanismen. Diese Daten weisen darauf hin, dass ein Defekt in den enzymatischen Aktivitäten des IGHMBP2 direkt mit der Pathogenese der SMARD1 korreliert. Des Weiteren lassen die im Rahmen dieser Arbeit erhaltenen Ergebnisse vermuten, dass SMARD1 durch Defekte in der zellularen Translationsmaschinerie entsteht. / Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an autosomal recessive neuronal disorder in infants. The disease is marked by early onset of respiratory distress and predominantly distal muscle weakness, as consequences of diaphragmatic paralysis and progressive degeneration of  motor neurons in the spinal cord, respectively. Genetically, SMARD1 is caused by mutations in the single gene encoding Immunoglobulin µ-Binding Protein 2 (IGHMBP2). Despite the tissue specific degeneration observed in SMARD1 patients, the disease gene product IGHMBP2 is ubiquitously expressed in human and mouse tissues. Therefore, SMARD1 appears to be a motor neuron disease caused by the malfunction of a “housekeeping” protein, rather than a neuron specific factor. IGHMBP2 harbors an N-terminal DEXDc-type helicase/ATPase domain and has been classified as a member of the Superfamily 1 (SF1) of helicases. This protein has been assigned to various cellular activities such as DNA replication, pre-mRNA splicing and transcription. However its precise function in either process has remained elusive. The study presented here aimed at the enzymatic characterization of IGHMBP2, the identification of a specific cellular process to which IGHMBP2 is connected and the role of this factor in the pathophysiology of SMARD1. As a first step toward this end, a two-step purification strategy was established, which enabled the large-scale purification of properly folded and enzymatically active IGHMBP2. In vitro enzymatic studies using this recombinant protein defined IGHMBP2 as an ATP-dependent helicase that catalyzes unwinding of duplices composed of either DNA or RNA in a 5’→3’ direction. In contrast to previous reports, indirect immunofluorescence studies revealed a predominantly cytoplasmic localization of IGHMBP2. Size-fractionation studies and affinity-purification experiments further showed that IGHMBP2 is part of an RNase-sensitive macromolecular complex, which was identified as the ribosome. Interestingly, IGHMBP2 was abundantly detected in both subunits as well as to 80S ribosomes but only in small amounts in actively translating polysomes. These data strongly point to a role of IGHMBP2 in ribosomes-associated gene regulation control, such as in mRNA stabilization or mRNA translation. However, its precise function in those pathways remains to be identified. The biochemical and enzymatic characterization of IGHMBP2 allowed for the first time insights into the pathomechanism of SMARD1. SMARD1-causing pathogenic IGHMBP2 variants were investigated for their enzymatic activities and interaction with ribosomal subunits. Interestingly, among all missense mutations that have been tested thus far, none obstructs association with ribosomal subunits. However, these mutants exhibit specific defects in either the ATPase or RNA helicase activity or both. The data suggest that defects in the enzymatic activity of IGHMBP2 directly correlate with the pathogenesis of SMARD1. Furthermore, these data also raise the possibility that the disease SMARD1 is caused by alterations in the cellular translation machinery.
2

Saccharomyces cerevisiae DNA helicases Mph1, Srs2 and Sgs1 collaborate for the reinitiation of stalled or collapsed replication forks / Die DNA-Helikasen Mph1, Srs2 and Sgs1 aus Saccharomyces cerevisiae kollaborieren im Rahmen der Reinitiation arretierter oder kollabierter Replikationsgabeln

Panico, Evandro Rocco 06 June 2006 (has links)
No description available.
3

Strukturelle Charakterisierung der C-terminalen Domäne des spleißosomalen DExD/H-Box Proteins hPrp22 / Strutural characterization of the C-terminal domain of the spliceosomal DExD/H-Box protein hPrp22

Kudlinzki, Denis 22 January 2008 (has links)
No description available.
4

An mRNA degradation complex in Bacillus subtilis / mRNA Abbau in Bacillus subtilis

Lehnik-Habrink, Martin 26 October 2011 (has links)
No description available.
5

DNA Unwinding by Helicases Investigated on the Single Molecule Level

Klaue, Daniel 01 November 2012 (has links) (PDF)
Each organism has to maintain the integrity of its genetic code, which is stored in its DNA. This is achieved by strongly controlled and regulated cellular processes such as DNA replication, -repair and -recombination. An essential element of these processes is the unwinding of the duplex strands of the DNA helix. This biochemical reaction is catalyzed by helicases that use the energy of nucleoside triphophate (NTP) hydrolysis. Although all helicases comprise highly conserved domains in their amino acid sequence, they exhibit large variations regarding for example their structure, their function and their target nucleic acid structures. The main objective of this thesis is to obtain insight into the DNA unwinding mechanisms of three helicases from two different organisms. These helicase vary in their structures and are involved in different pathways of DNA metabolism. In particular the replicative, hexameric helicase Large Tumor-Antigen (T-Antigen) from Simian virus 40 and the DNA repair helicases RecQ2 and RecQ3 from Arabidopsis thaliana are studied. To observe DNA unwinding by these helicases in real-time on the single molecule level, a biophysical technique, called magnetic tweezers, was applied. This technique allows to stretch single DNA molecules attached to magnetic particles. Simultaneously one can measure the DNA end-to-end distance. Special DNA hairpin templates allowed to characterize different parameters of the DNA unwinding reaction such as the unwinding velocity, the length of unwound DNA (processivity) or the influence of forces. From this mechanistic models about the functions of the helicases could be obtained. T-Antigen is found to be one of the slowest and most processive helicases known so far. In contrast to prokaryotic helicases, the unwinding velocity of T-Antigen shows a weak dependence on the applied force. Since current physical models for the unwinding velocity fail to describe the data an alternative model is developed. The investigated RecQ helicases are found to unwind and close short stretches of DNA in a repetitive fashion. This activity is shown for the first time under external forces. The experiments revealed that the repetitive DNA unwinding is based on the ability of both enzymes to switch from one single DNA strand to the other. Although RecQ2 and RecQ3 perform repetitive DNA unwinding, both enzymes differ largely in the measured DNA unwinding properties. Most importantly, while RecQ2 is a classical helicase that unwinds DNA, RecQ3 mostly rewinds DNA duplexes. These different properties may reflect different specific tasks of the helicases during DNA repair processes. To obtain high spatial resolution in DNA unwinding experiments, the experimental methods were optimized. An improved and more stable magnetic tweezers setup with sub-nanometer resolution was built. Additionally, different methods to prepare various DNA templates for helicase experiments were developed. Furthermore, the torsional stability of magnetic particles within an external field was investigated. The results led to selection rules for DNA-microsphere constructs that allow high resolution measurements. / Jeder Organismus ist bestrebt, die genetischen Informationen intakt zu halten, die in seiner DNA gespeichert sind. Dies wird durch präzise gesteuerte zelluläre Prozesse wie DNA-Replikation, -Reparatur und -Rekombination verwirklicht. Ein wesentlicher Schritt ist dabei das Entwinden von DNA-Doppelsträngen zu Einzelsträngen. Diese chemische Reaktion wird von Helikasen durch die Hydrolyse von Nukleosidtriphosphaten katalysiert. Obwohl bei allen Helikasen bestimmte Aminosäuresequenzen hoch konserviert sind, können sie sich in Eigenschaften wie Struktur, Funktion oder DNA Substratspezifität stark unterscheiden. Gegenstand der vorliegenden Arbeit ist es, die Entwindungsmechanismen von drei verschieden Helikasen aus zwei unterschiedlichen Organismen zu untersuchen, die sich in ihrer Struktur sowie ihrer Funktion unterscheiden. Es handelt sich dabei um die replikative, hexamerische Helikase Large Tumor-Antigen (T-Antigen) vom Simian-Virus 40 und die DNA-Reparatur-Helikasen RecQ2 und RecQ3 der Pflanze Arabidopsis thaliana. Um DNA-Entwindung in Echtzeit zu untersuchen, wird eine biophysikalische Einzelmolekültechnik, die \"Magnetische Pinzette\", verwendet. Mit dieser Technik kann man ein DNA-Molekül, das an ein magnetisches Partikel gebunden ist, strecken und gleichzeitig dessen Gesamtlänge messen. Mit speziellen DNA-Konstrukten kann man so bestimmte Eigenschaften der Helikasen bei der DNA-Entwindung, wie z.B. Geschwindigkeit, Länge der entwundenen DNA (Prozessivität) oder den Einfluß von Kraft, ermitteln. Es wird gezeigt, dass T-Antigen eine der langsamsten und prozessivsten Helikasen ist. Im Gegensatz zu prokaryotischen Helikasen ist die Entwindungsgeschwindigkeit von T-Antigen kaum kraftabhängig. Aktuelle Modelle sagen dieses Verhalten nicht vorraus, weshalb ein alternatives Modell entwickelt wird. Die untersuchten RecQ-Helikasen zeigen ein Entwindungsverhalten bei dem permanent kurze Abschnitte von DNA entwunden und wieder zusammengeführt werden. Dieses Verhalten wird hier zum ersten Mal unter dem Einfluß externer Kräfte gemessen. Es wird gezeigt, dass die permanente Entwindung auf die Fähigkeit beider Helikasen, von einem einzelen DNA-Strang auf den anderen zu wechseln, zurückzuführen ist. Obwohl RecQ2 und RecQ3 beide das Verhalten des permanenten Entwindens aufzeigen, unterscheiden sie sich stark in anderen Eigenschaften. Der gravierendste Unterschied ist, dass RecQ2 wie eine klassische Helikase die DNA entwindet, während RecQ3 eher bestrebt ist, die DNA-Einzelstränge wieder zusammenzuführen. Die unterschiedlichen Eigenschaften könnten die verschieden Aufgaben beider Helikasen während DNA-Reparaturprozessen widerspiegeln. Weiterhin werden die experimentellen Methoden optimiert, um möglichst hohe Auflösungen der Daten zu erreichen. Dazu zählen der Aufbau einer verbesserten und stabileren \"Magnetischen Pinzette\" mit sub-nanometer Auflösung und die Entwicklung neuer Methoden, um DNA Konstrukte herzustellen. Außerdem wird die Torsions\\-steifigkeit von magnetischen Partikeln in externen magnetischen Feldern untersucht. Dabei finden sich Auswahlkriterien für DNA-gebundene magnetische Partikel, durch die eine hohe Auflösung erreicht wird.
6

Charakterisierung der TypI-Interferon-antagonistischen Aktivität der humanpathogenen Orbiviren Tribec-Virus und Kemerovo-Virus / Characterization of type I IFN antagonistic activity of the human pathogenic Orbiviruses Tribec virus and Kemerovo virus

Berndt, Christian Philipp 04 February 2015 (has links)
No description available.
7

DNA Unwinding by Helicases Investigated on the Single Molecule Level

Klaue, Daniel 06 September 2012 (has links)
Each organism has to maintain the integrity of its genetic code, which is stored in its DNA. This is achieved by strongly controlled and regulated cellular processes such as DNA replication, -repair and -recombination. An essential element of these processes is the unwinding of the duplex strands of the DNA helix. This biochemical reaction is catalyzed by helicases that use the energy of nucleoside triphophate (NTP) hydrolysis. Although all helicases comprise highly conserved domains in their amino acid sequence, they exhibit large variations regarding for example their structure, their function and their target nucleic acid structures. The main objective of this thesis is to obtain insight into the DNA unwinding mechanisms of three helicases from two different organisms. These helicase vary in their structures and are involved in different pathways of DNA metabolism. In particular the replicative, hexameric helicase Large Tumor-Antigen (T-Antigen) from Simian virus 40 and the DNA repair helicases RecQ2 and RecQ3 from Arabidopsis thaliana are studied. To observe DNA unwinding by these helicases in real-time on the single molecule level, a biophysical technique, called magnetic tweezers, was applied. This technique allows to stretch single DNA molecules attached to magnetic particles. Simultaneously one can measure the DNA end-to-end distance. Special DNA hairpin templates allowed to characterize different parameters of the DNA unwinding reaction such as the unwinding velocity, the length of unwound DNA (processivity) or the influence of forces. From this mechanistic models about the functions of the helicases could be obtained. T-Antigen is found to be one of the slowest and most processive helicases known so far. In contrast to prokaryotic helicases, the unwinding velocity of T-Antigen shows a weak dependence on the applied force. Since current physical models for the unwinding velocity fail to describe the data an alternative model is developed. The investigated RecQ helicases are found to unwind and close short stretches of DNA in a repetitive fashion. This activity is shown for the first time under external forces. The experiments revealed that the repetitive DNA unwinding is based on the ability of both enzymes to switch from one single DNA strand to the other. Although RecQ2 and RecQ3 perform repetitive DNA unwinding, both enzymes differ largely in the measured DNA unwinding properties. Most importantly, while RecQ2 is a classical helicase that unwinds DNA, RecQ3 mostly rewinds DNA duplexes. These different properties may reflect different specific tasks of the helicases during DNA repair processes. To obtain high spatial resolution in DNA unwinding experiments, the experimental methods were optimized. An improved and more stable magnetic tweezers setup with sub-nanometer resolution was built. Additionally, different methods to prepare various DNA templates for helicase experiments were developed. Furthermore, the torsional stability of magnetic particles within an external field was investigated. The results led to selection rules for DNA-microsphere constructs that allow high resolution measurements. / Jeder Organismus ist bestrebt, die genetischen Informationen intakt zu halten, die in seiner DNA gespeichert sind. Dies wird durch präzise gesteuerte zelluläre Prozesse wie DNA-Replikation, -Reparatur und -Rekombination verwirklicht. Ein wesentlicher Schritt ist dabei das Entwinden von DNA-Doppelsträngen zu Einzelsträngen. Diese chemische Reaktion wird von Helikasen durch die Hydrolyse von Nukleosidtriphosphaten katalysiert. Obwohl bei allen Helikasen bestimmte Aminosäuresequenzen hoch konserviert sind, können sie sich in Eigenschaften wie Struktur, Funktion oder DNA Substratspezifität stark unterscheiden. Gegenstand der vorliegenden Arbeit ist es, die Entwindungsmechanismen von drei verschieden Helikasen aus zwei unterschiedlichen Organismen zu untersuchen, die sich in ihrer Struktur sowie ihrer Funktion unterscheiden. Es handelt sich dabei um die replikative, hexamerische Helikase Large Tumor-Antigen (T-Antigen) vom Simian-Virus 40 und die DNA-Reparatur-Helikasen RecQ2 und RecQ3 der Pflanze Arabidopsis thaliana. Um DNA-Entwindung in Echtzeit zu untersuchen, wird eine biophysikalische Einzelmolekültechnik, die \"Magnetische Pinzette\", verwendet. Mit dieser Technik kann man ein DNA-Molekül, das an ein magnetisches Partikel gebunden ist, strecken und gleichzeitig dessen Gesamtlänge messen. Mit speziellen DNA-Konstrukten kann man so bestimmte Eigenschaften der Helikasen bei der DNA-Entwindung, wie z.B. Geschwindigkeit, Länge der entwundenen DNA (Prozessivität) oder den Einfluß von Kraft, ermitteln. Es wird gezeigt, dass T-Antigen eine der langsamsten und prozessivsten Helikasen ist. Im Gegensatz zu prokaryotischen Helikasen ist die Entwindungsgeschwindigkeit von T-Antigen kaum kraftabhängig. Aktuelle Modelle sagen dieses Verhalten nicht vorraus, weshalb ein alternatives Modell entwickelt wird. Die untersuchten RecQ-Helikasen zeigen ein Entwindungsverhalten bei dem permanent kurze Abschnitte von DNA entwunden und wieder zusammengeführt werden. Dieses Verhalten wird hier zum ersten Mal unter dem Einfluß externer Kräfte gemessen. Es wird gezeigt, dass die permanente Entwindung auf die Fähigkeit beider Helikasen, von einem einzelen DNA-Strang auf den anderen zu wechseln, zurückzuführen ist. Obwohl RecQ2 und RecQ3 beide das Verhalten des permanenten Entwindens aufzeigen, unterscheiden sie sich stark in anderen Eigenschaften. Der gravierendste Unterschied ist, dass RecQ2 wie eine klassische Helikase die DNA entwindet, während RecQ3 eher bestrebt ist, die DNA-Einzelstränge wieder zusammenzuführen. Die unterschiedlichen Eigenschaften könnten die verschieden Aufgaben beider Helikasen während DNA-Reparaturprozessen widerspiegeln. Weiterhin werden die experimentellen Methoden optimiert, um möglichst hohe Auflösungen der Daten zu erreichen. Dazu zählen der Aufbau einer verbesserten und stabileren \"Magnetischen Pinzette\" mit sub-nanometer Auflösung und die Entwicklung neuer Methoden, um DNA Konstrukte herzustellen. Außerdem wird die Torsions\\-steifigkeit von magnetischen Partikeln in externen magnetischen Feldern untersucht. Dabei finden sich Auswahlkriterien für DNA-gebundene magnetische Partikel, durch die eine hohe Auflösung erreicht wird.

Page generated in 0.0392 seconds