• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 2
  • 2
  • Tagged with
  • 30
  • 30
  • 11
  • 9
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CHARACTERIZING THE IMPACT OF VIRAL PROTEIN BINDING ON THE FUNCTIONOF THE DEAD-BOX RNA HELICASE DDX3X

Venus, Sarah L. January 2022 (has links)
No description available.
2

The Expression of p68 Protein in the Australian Zebra Finch Brain Across Development

Okeke, Chukwuemeka Franklin 03 May 2007 (has links)
Steroid hormones and receptors play a role in regulating biological events underlying brain development and sexual differentiation. Current evidence indicates that circulating sex steroid hormones are not entirely responsible for development of neural sex differences in song birds such as the zebra finch. p68, as a coactivator specific for estrogen receptor alpha (ERα) and an essential factor in early tissue development and maturation might play a role in sexual differentiation. Zebra finches have a sexually dimorphic song control nuclei in the brain, males have larger song nuclei than females, and are ideal model for investigating the mechanisms controlling sexual differentiation of the brain and behavior. Western blot analysis showed a significant sex difference at post hatch day 10 (P10). Immunohistochemistry showed localization of p68 immunoreactive cells in the ZF brain including nuclei that compose the avian song system. p68 is probably developmentally regulated and may be modulated by endogenous estrogen and estrogen receptors suggesting a role for p68 in sexual differentiation. INDEX WORDS: p68, coactivator, RNA helicase, steroid receptor, song control nuclei, zebra finch (ZF)
3

Investigating the role of DDX27 on cardiac muscle structure and function in zebrafish

Joseph, Remi 05 June 2020 (has links)
Cardiomyopathies are the most common form of genetic disorders featuring primary abnormalities in the structure and function of the heart. Over the past few decades, tremendous progress has been made in elucidating the genetic basis of cardiac disorders. However, the development of specific and effective therapies remains largely limited due to the lack of suitable therapeutic targets. Nucleoli are polyfunctional subnuclear domains that are heavily involved in ribosomal RNA production. Recent studies have identified nucleolar structure perturbations and functional defects associated with different types of cardiomyopathies. Additionally, several mutations have been identified in several ribosomal genes that are linked to cardiomyopathy in human patients. We previously identified a nucleolar DEAD-box RNA helicase, DDX27, as a critical regulator of myogenesis. This study aimed to investigate the role of ddx27 deficiency in cardiac muscle and expand the understanding of DDX27 mediated pathways that are involved in myopathies. In this study, we used zebrafish models to investigate ddx27 deficiency in cardiac muscle. Phenotype characterization, cardiac function testing, transmission electron microscopy and histological analysis of ddx27 mutants revealed corresponding dilated cardiomyopathy and skeletal muscle hypotrophy. Furthermore, knockdown of DDX27 ortholog, Rs1, in cardiac muscle was fatal for Drosophila larvae. However, other tissues (i.e., neural or gastrointestinal) were unaffected suggesting that abnormalities caused by Ddx27 deficiency are specific to cardiac and skeletal muscle. Immunofluorescence, northern blotting and polysomal profiling of ddx27 zebrafish myofibers revealed that DDX27 is necessary for preserving nucleolar architecture and ribosome biogenesis. Here we have shown that DDX27 is essential for normal function of cardiac and skeletal myogenic processes due to its critical role in ribosomal regulation. Additionally, we provide novel evidence for DdX27 deficiency contributing to dilated cardiomyopathy. Overall, the findings of this study provide further evidence for the role of RNA helicases, specifically DDX27, in cardiac and skeletal muscle pathogenesis as well as provide novel insight into the molecular pathways of therapeutic benefit for afflicted patients of these diseases. / 2022-06-04T00:00:00Z
4

Insights into the regulation of RNA helicases by protein cofactors

Memet, Indira 05 February 2019 (has links)
No description available.
5

Tyrosine Phosphorylation of p68 RNA Helicase Promotes Metastasis in Colon Cancer Progression

Liu, Chia Yi 18 June 2012 (has links)
The initiation of cancer metastasis usually requires Epithelial-Mesenchymal Transition (EMT), by which tumor cells lose cell-cell interactions and gain the ability of migration and invasion. Previous study demonstrated that p68 RNA helicase, a prototypical member of the DEAD-box RNA helicases, functions as a mediator to promote platelet-derived growth factor (PDGF)-induced EMT through facilitating nuclear translocation of β-catenin in colon cancer cells. In this context, p68 RNA helicase was found to be phosphorylated at the tyrosine 593 residue (referred as phosphor-p68) by c-Abl kinase, and this phosphorylation is required for the activation of β-catenin signaling and the consequent EMT. The phosphor-p68 RNA helicase-mediated EMT was characterized by the repression of an epithelial marker, E-cadherin, and the upregulation of a mesenchymal marker, Vimentin. E-cadherin, a major cell-cell adhesion molecule that is involved in the formation of adherens junctions, has been shown to sequester β-catenin at the cell membrane and thus inhibit its transcriptional activity. The functional loss of E-cadherin is the fundamental event of EMT. Despite the role of phosphor-p68 RNA helicase in regulating nuclear translocation of β-catenin, whether phosphor-p68 is involved in the regulation of E-cadherin remains unknown. Here, our data indicated that phosphor-p68 RNA helicase initiated EMT by transcriptional upregulation of Snail1, a master transcriptional repressor of E-cadherin. The data suggest that phosphor-p68 RNA helicase displaced HDAC1 from the chromatin remodeling MBD3:Mi-2/NuRD complex at the Snail1 promoter, thereby activating the transcription of Snail1. In the xenograft tumor model, abolishing the phosphorylation of p68 RNA helicase by the expression of Y593F mutant resulted in a significant reduction of metastatic potential in human colon cancer cells. Analyses in the colon cancer tissues also revealed that the tyrosine 593 phosphorylation level of p68 RNA helicase is substantially enhanced in the tumor tissues comparing to that in the corresponding normal counterparts, suggesting a correlation of phosphor-p68 and tumor progression. In conclusion, we showed that tyrosine phosphorylation of p68 RNA helicase positively correlated to the malignant status of colon cancer progression. The molecular basis behind this correlation could be partly through the transcriptional regulation of Snail1.
6

Mécanismes et régulation d'une ARN hélicase essentielle chez E. coli : le facteur de terminaison de la transcription bactérienne Rho / Mechanisms and regulation of an essential RNA helicase in E. coli : the bacterial transcription termination factor Rho

Rabhi, Makhlouf 24 February 2011 (has links)
Chez E. coli, Rho est un facteur essentiel qui contrôle l’expression de multiples unités transcriptionnelles via le phénomène de terminaison de la transcription. Rho est un moteur moléculaire ATP-dépendant ayant une activité ARN hélicase caractéristique de sa capacité à dissocier des obstacles (comme l’ARN polymérase) lors de sa translocation le long de sa piste ARN. Il existe différentes structures de Rho en interaction avec l’ARN qui suggèrent des mécanismes de translocation contradictoires. Afin de mieux comprendre ces mécanismes, nous avons utilisé deux approches complémentaires pour identifier les fonctionnalités moléculaires importantes au sein de l’ARN et de Rho : l’approche NAIM (Nucleotide Analog Interference Mapping) développée au laboratoire et la mutagenèse dirigée. Nos résultats excluent une organisation de l’anneau hexamérique en «trimère de dimère» (ainsi que les mécanismes de translocation qui en découlent) mais sont compatibles avec différents aspects rencontrés dans une structure en anneau asymétrique plus récente. Toutefois, nos résultats ne supportent pas le mécanisme d’escorte nucléotide par nucléotide qui découle de cette structure asymétrique. Ainsi, nous montrons que Rho contacte la chaîne ARN de façon hétérogène et ne nécessite un groupement 2’-OH que tous les sept nucléotides en moyenne. Par ailleurs, nous avons exploré l’interactome d’E. coli dans le but d’identifier d’éventuels régulateurs de la fonction de Rho. Nous montrons que la protéine hexamèrique Hfq présente une similitude topologique avec les protéines endogènes NusG et YaeO et que, comme elles, Hfq s’associe à Rho pour en réguler la fonction. L’interaction Hfq:Rho inhibe les activités enzymatiques de Rho. Ces résultats révèlent un nouveau mécanisme d’anti-terminaison de la transcription avec diverses implications possibles dans le métabolisme bactérien et/ou la virulence de germes pathogènes. / In E. coli, Rho is an essential factor that controls the expression of multiple transcriptional units via the phenomenon of transcription termination. Rho is an ATP-dependent molecular motor displaying RNA helicase activity, a feature typical of Rho’s ability to dissociate obstacles (such as RNA polymerase) during translocation along its RNA track. Different structures of the Rho-RNA complex have been published and suggest contradictory mechanisms of translocation. In order to understand these mechanisms, we have used two complementary approaches to identify functionality molecular comports in RNA and Rho : the NAIM (Nucleotide Analog Interference Mapping) approach developed in the laboratory and site-directed mutagenesis. Our results exclude that Rho forms a functional "trimer of dimer" ring (which rules out related translocation mechanisms) but are compatible with various aspects encountered in a recent asymmetric ring structure. However, our results do not support the "nucleotide by nucleotide" escort mechanism inferred from this asymmetric structure. Indeed, we show that Rho forms heterogonous contacts with the RNA chain and only requires a 2'-OH every seven nucleotides on average. Furthermore, we explored the interactome of E. coli in order to identify potential regulators of Rho function. We show that the hexameric protein Hfq displays topological similarity with the endogenous proteins NusG and YaeO and, that, like them, Hfq associates with Rho to regulate Rho function. The Hfq:Rho interaction inhibits the enzymatic activities of Rho. These results reveal a novel mechanism of transcription anti-termination with potentially important implications in bacterial metabolism and/or virulence of pathogens.
7

Molecular basis of the DExH-box RNA helicase RNA helicase A (RHA/DHX9) in eukaryotic protein synthesis

Fritz, Sarah E. 14 October 2015 (has links)
No description available.
8

Biophysical investigation of G-quadruplex recognition by the N-terminal construct of RNA helicase associated with AU-rich element (RHAU)

Marushchak, Oksana 06 December 2013 (has links)
G-quadruplexes, characterized by stacked G-tetrad rings held together by Hoogsteen hydrogen bonds, have been visualized in human cells and implicated in transcriptional and translational control, telomere maintenance and disease. RHA Helicase associated with AU-rich element (RHAU), a DEAH-box helicase, is a major G-quadruplex resolvase in human cell lysates. It binds G-quadruplexes through the RHAU specific motif in its N-terminus. In order to investigate the recognition of G-quadruplexes by helicases, the binding between the N-terminal construct of RHAU, RHAU53-105, and the DNA analog of the quadruplex formed by the 5’ terminus of human telomerase RNA component, hTR1-20, was investigated in a comprehensive biophysical approach followed by crystallization screening. RHAU53-105, hTR1-20 DNA and their complexes were analysed by gel electrophoresis, UV-visible spectroscopy, spectropolarimetry, dynamic light scattering and small angle X-ray scattering (SAXS). The findings reveal that hTR1-20 DNA, separated in two conformations by size exclusion chromatography in the presence of potassium cations, assumes a disk-like parallel G-quadruplex secondary structure in solution. Far-UV circular dichroism spectra and SAXS demonstrate that RHAU53-105 assumes an extended (Dmax = 7.8 nm , rG = 2.1 (±0.2) nm) and ordered conformation in solution. The analysis confirms the binding between RHAU53-105 and each conformation of the hTR1-20 DNA quadruplex. Circular dichroism spectra indicate the retention of quadruplex secondary structure in both RHAU53-105•hTR1-20 DNAc1 and RHAU53-105•hTR1-20 DNAc2 complexes. This analysis provides some insight into the interaction between G-quadruplexes and the N-terminal domain of RHAU and identifies 0.2 M sodium formate, 20 % (w/v) polyethylene glycol 3350 and 1.5 M sodium chloride, 10 % (v/v) ethanol as preliminary conditions for crystallization of the complex of RHAU53-105 and hTR1-20 DNAc2. / October 2014
9

Mécanismes d’adaptation aux basses températures de croissance de la bactérie pathogène B. cereus : rôle des hélicases à ARN / Involvement of RNA helicases in the cold adaptation of the foodborne pathogenic bacteria Bacillus cereus

Pandiani, Franck 16 December 2010 (has links)
Bacillus cereus est une bactérie largement disséminée dans la nature, contaminant ainsi les aliments en contact avec le sol. En France, cette bactérie est considérée comme le quatrième agent de toxi infection alimentaire collective. Pour être pathogène, B. cereus doit être capable de se multiplier lors des différentes étapes de transformation et notamment au cours de la réfrigération. Le but de cette étude a été d'étudier les mécanismes moléculaires de la réponse adaptative au froid et en particulier le rôle des hélicases à ARN de B. cereus ATCC 14579. Le gène cshA, codant pour une hélicase à ARN putative, a été identifié par une approche de mutagénèse aléatoire, comme jouant un important dans l’adaptation au froid de B. cereus. La souche ATCC 14579 possède 5 gènes codant pour des hélicases à ARN, cshA à cshE qui sont tous fortement surexprimés à 10°C par rapport à 37°C et quel que soit le stade de croissance considéré. La délétion simple des gènes cshA, cshB et cshC conduit à l’apparition de phénotypes cryosensibles, se traduisant par une incapacité d'adaptation au froid par rapport à la souche sauvage, associée à une modification de la morphologie cellulaire. De plus, CshA, CshB et CshC possèdent chacune un domaine de température où leur action est prépondérante. Elles semblent également être impliquées dans l’adaptation au stress oxydant et au stress basique, alors que CshD et E n’ont pas de rôle dans l’adaptation aux stress testés. Nous avons montré que CshA est indispensable à basse température, pour permettre le maintien de la stabilité des ribosomes avec lesquels elle interagit directement, mais aussi pour réguler la dégradation des ARNr. L’identification des partenaires protéiques interagissant avec CshA suggérent qu'elle puisse être également impliquée dans un complexe de dégradation des ARN / Bacillus cereus is a widespread bacteria, thus contaminating all raw materials in contact with soil. In France, B. cereus is considered as the fourth causative agent of foodborne illness. To be pathogenic, B. cereus should multiply during the various stages of food processing and particularly during preservation at low temperature. The aim of this study was to study molecular mechanisms of the adaptive response at low temperature and more precisely the involvement of the B. cereus ATCC 14579 RNA helicases. The cshA gene encoding a putative RNA helicase was identified by a random mutagenesis approach, as playing a major role in cold adaptation of B. cereus. The ATCC 14579 strain possesses 5 genes encoding putative RNA helicases, cshA to cshE, which were all strongly overexpressed at 10°C versus 37°C, whatever the growth stage. The simple deletion of cshA, cshB, and cshC lead to a cold-sensitive phenotype, resulting in an inability to adapt at 10 °C compared to the wild type strain, associated to a huge modification of cell morphology. In addition, CshA, CshB and CshC have a temperature range where their action is decisive. The role of these three RNA helicases also appears to be important in adaptation to oxidative and basic stresses while CshD and E did not appear to be involved in the adaptation to the tested stresses. The RNA helicase CshA has the most important role in adaptation to cold. We demonstrated that CshA is essential at low temperature to allow the maintenance of ribosome stability. CshA interacts directly with ribosomes, and also regulate rRNA degradation. The identification of protein partners that interact with CshA suggests that it could be involve in a complex of RNA decay
10

The DEAD-Box Helicase Family Member Ded1 Plays a Role in the Cellular Stress Response

Rodela, Emily Cristina, Rodela, Emily Cristina January 2016 (has links)
The DEAD-Box RNA helicase family is a conserved group of enzymes that function in gene expression through ATP-dependent RNA unwinding and ribonucleoprotein (RNP) remodeling. DEAD-Box helicases function in multiple cellular processes, including pre-mRNA processing, translation, mRNA export, and mRNA decay. Although DEAD-Box proteins are critical for gene expression, much of their mechanistic activities are poorly understood. DEAD-Box proteins have increasingly been linked to tumorigenesis in humans, and better defining their activity at the mechanistic level will aid in understanding the underlying disease pathology. In this study, we used the model organism Saccharomyces cerevisiae to study the human DEAD-Box protein DDX3 orthologue, Ded1, and its role in translation initiation during cellular stress. Recently, we have found that Ded1 is an important mediator of the cellular stress response in a TOR-dependent manner. TOR regulates protein synthesis dependent on energy availability in the cell by regulating the assembly of the eukaryotic translation initiation complex. Human DDX3 has been found to interact with translation initiation complex subunit eIF4E and Ded1 has been found to interact with the translation initiation complex subunit eIF4G. In this study, we examined the purported interaction region between Ded1 and eIF4G on the C-terminus of Ded1 and found that ded1 Δ591-604 prevents eIF4G degradation under rapamycin treatment and confers resistance to rapamycin-induced growth inhibition. We also examined putative regulatory phosphorylation sites in the purported Ded1 eIF4G binding region. We propose that the Ded1/eIF4G interaction is critical for the repression of translation by Ded1 and that eIF4G degradation may be regulated by Ded1 under stress conditions.

Page generated in 0.0605 seconds