• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification de protéines associées à la RNA Hélicase DBP4 chez la levure saccharomyces cerevisiae

Ba, Korka January 2007 (has links) (PDF)
La protéine nucléolaire Dbp4 est impliquée dans la biogenèse de l'ARN ribosomique (ARNr) 18S chez la levure Saccharomyces cerevisiae. Elle présente une interaction génétique avec le petit ARN nucléolaire (snoRNA) U14. Dbp4 est une RNA hélicase de la famille «DEAD-box» et elle est hautement conservée dans l'évolution. Son homologue chez l'humain (DDX10) serait impliqué dans certains types de cancers. La plupart des «DEAD-box » RNA hélicases sont essentielles à la croissance de la levure indiquant ainsi une absence de redondance de leurs fonctions sur leurs substrats spécifiques. De façon plus intéressante, il a été démontré que plusieurs hélicases seraient aussi impliqués dans la biogenèse des ribosomes. Les protéines «DEAD-box» sont caractérisées par la présence de neuf motifs conservés formant la région centrale catalytique de l'enzyme. Cette dernière est flanquée par deux extensions de composition variable aux extrémités N- et C-terminales. Ces extensions joueraient un rôle déterminant dans la reconnaissance du substrat et/ou la liaison de cofacteurs. Nos analyses bioinformatiques prédisent la présence d'un domaine d'interaction protéine-protéine appelé domaine «coiled-coil» (CC) à chacune des extrémités N-et C-terminale. Notre hypothèse est que Dbp4 serait associé à des protéines par l'intermédiaire de ces domaines CC. Afin d'identifier les partenaires protéiques potentiels de Dbp4, nous avons utilisé le système double hybride chez la levure en criblant une banque génomique de Saccharomyces cerevisiae. Parmi les clones positifs, nous avons identifié la présence des protéines Ifh1, Rrn5, Rps20, Rps2 et Msb2. Curieusement à l'exception de Msb2, toutes ces protéines sont impliquées dans la biogenèse des ribosomes et renferment des domaines CC comme Dbp4. Cela suggère que ces protéines sont des partenaires potentiels de Dbp4 pour la biogenèse des ribosomes. Pour confirmer ces résultats de double hybride, nous avons réalisé des tests in vivo par co-immunoprécipitation dont les résultats préliminaires n'ont pas été concluants. Des études complémentaires seront nécessaires afin d'éclaircir ces résultats. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Saccharomyces cerevisiae, Nucléole, Ribosomes, RNA hélicases, Dbp4.
2

Caractérisation biochimique de l'ARN hélicase Dpb4

Lapensée, Martin January 2008 (has links) (PDF)
Les mécanismes qui entrent en jeu dans la maturation de l'ARN ribosomique (ARNr) restent toujours obscurs. Dbp4 est une ARN hélicase putative qui fait partie du groupe des hélicases « DEAD-box ». Chez la levure Saccharomyces cerevisiae, Dbp4 aurait un rôle à jouer dans la maturation du pré-ARNr 35S. Les ARN hélicases ont généralement une activité ATPasique dépendante de la présence d'ARN. De plus, la plupart des hélicases possèdent des domaines supplémentaires en N-et en C-terminal qui pourraient être nécessaires pour l'activité et/ou pour conférer la spécificité pour un substrat. Nous désirons déterminer les caractéristiques biochimiques de Dbp4. Cette enzyme est pourvue d'un très long domaine C-terminal qui contient un motif de liaison protéique « coiled-coil ». La présence de ce motif suggère que Dbp4 pourrait nécessiter l'assistance de protéine(s) cofacteur(s) pour avoir une activité ATPasique et/ou hélicasique. Des tests d'interaction dans le système double hybride de levure ont permis d'identifier une interaction entre Dbp4 et les protéines Bfr2, Esf1 et Enp2. Les conditions optimales pour l'activité ATPasique sont une incubation à 37 °C dans un tampon HEPES à pH 7.5 avec 10 µg d'ARN total de levure. Dbp4 possède une activité ATPasique qui augmente de quatre à cinq fois en présence d'ARN. La protéine Dbp4 recombinante sans la section C-terminale a été produite et des tests d'activité ATPasique ont été effectués. Selon nos observations, la section C-terminale de Dbp4 joue un rôle important pour l'activité ATPasique. Finalement, la production d'anticorps anti-Dbp4 chez le lapin nous a donné deux anticorps, A et B, capables de détecter Dbp4. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Hélicase, ATPase, ARNr, DEAD-box, Dbp4, Saccharomyces cerevisiae, Double hybride et coloration au vert de malachite.
3

Mécanismes et régulation d'une ARN hélicase essentielle chez E. coli : le facteur de terminaison de la transcription bactérienne Rho / Mechanisms and regulation of an essential RNA helicase in E. coli : the bacterial transcription termination factor Rho

Rabhi, Makhlouf 24 February 2011 (has links)
Chez E. coli, Rho est un facteur essentiel qui contrôle l’expression de multiples unités transcriptionnelles via le phénomène de terminaison de la transcription. Rho est un moteur moléculaire ATP-dépendant ayant une activité ARN hélicase caractéristique de sa capacité à dissocier des obstacles (comme l’ARN polymérase) lors de sa translocation le long de sa piste ARN. Il existe différentes structures de Rho en interaction avec l’ARN qui suggèrent des mécanismes de translocation contradictoires. Afin de mieux comprendre ces mécanismes, nous avons utilisé deux approches complémentaires pour identifier les fonctionnalités moléculaires importantes au sein de l’ARN et de Rho : l’approche NAIM (Nucleotide Analog Interference Mapping) développée au laboratoire et la mutagenèse dirigée. Nos résultats excluent une organisation de l’anneau hexamérique en «trimère de dimère» (ainsi que les mécanismes de translocation qui en découlent) mais sont compatibles avec différents aspects rencontrés dans une structure en anneau asymétrique plus récente. Toutefois, nos résultats ne supportent pas le mécanisme d’escorte nucléotide par nucléotide qui découle de cette structure asymétrique. Ainsi, nous montrons que Rho contacte la chaîne ARN de façon hétérogène et ne nécessite un groupement 2’-OH que tous les sept nucléotides en moyenne. Par ailleurs, nous avons exploré l’interactome d’E. coli dans le but d’identifier d’éventuels régulateurs de la fonction de Rho. Nous montrons que la protéine hexamèrique Hfq présente une similitude topologique avec les protéines endogènes NusG et YaeO et que, comme elles, Hfq s’associe à Rho pour en réguler la fonction. L’interaction Hfq:Rho inhibe les activités enzymatiques de Rho. Ces résultats révèlent un nouveau mécanisme d’anti-terminaison de la transcription avec diverses implications possibles dans le métabolisme bactérien et/ou la virulence de germes pathogènes. / In E. coli, Rho is an essential factor that controls the expression of multiple transcriptional units via the phenomenon of transcription termination. Rho is an ATP-dependent molecular motor displaying RNA helicase activity, a feature typical of Rho’s ability to dissociate obstacles (such as RNA polymerase) during translocation along its RNA track. Different structures of the Rho-RNA complex have been published and suggest contradictory mechanisms of translocation. In order to understand these mechanisms, we have used two complementary approaches to identify functionality molecular comports in RNA and Rho : the NAIM (Nucleotide Analog Interference Mapping) approach developed in the laboratory and site-directed mutagenesis. Our results exclude that Rho forms a functional "trimer of dimer" ring (which rules out related translocation mechanisms) but are compatible with various aspects encountered in a recent asymmetric ring structure. However, our results do not support the "nucleotide by nucleotide" escort mechanism inferred from this asymmetric structure. Indeed, we show that Rho forms heterogonous contacts with the RNA chain and only requires a 2'-OH every seven nucleotides on average. Furthermore, we explored the interactome of E. coli in order to identify potential regulators of Rho function. We show that the hexameric protein Hfq displays topological similarity with the endogenous proteins NusG and YaeO and, that, like them, Hfq associates with Rho to regulate Rho function. The Hfq:Rho interaction inhibits the enzymatic activities of Rho. These results reveal a novel mechanism of transcription anti-termination with potentially important implications in bacterial metabolism and/or virulence of pathogens.
4

Du pore nucléaire à l'endommagement de l'ADN : l'aller et retour de Ddx19 médié par ATR pour résoudre des conflits entre la transcription et la réplication / From the nuclear pore to DNA damage : the ATR-mediated shuttling of Ddx19 to resolve transcription-replication conflicts

Hodroj, Dana 09 December 2014 (has links)
Les cellules sont constamment exposées à des agents endommageant de l'ADN d'origine exogène, notamment les rayons ultraviolets, les irradiations γ, et l'exposition aux agents chimiques génotoxiques, mais également d'origine endogène générés par le métabolisme cellulaire. De plus en plus d'évidences montrent que la transcription est un processus biologique qui peut mettre en péril l'intégrité du génome. Un mécanisme actuellement très étudié qui lie la transcription à l'instabilité génomique est la formation des boucles R (R-loops), des structures hybrides ARN:ADN qui exposent un ADN simple brin déplacé. Ces structures aberrantes se présentent en tant que sous-produits de la transcription et/ou lors de l'interférence entre la réplication et la transcription, et plus récemment ils ont été montrées s'accumuler lorsque la biogénèse de l'ARNm est perturbée. La persistance des boucles R est une source importante d'instabilité génomique car elle peut générer des cassures double brin de l'ADN et favoriser la recombinaison. Pour faire face aux conséquences néfastes des endommagements de l'ADN, les cellules activent une cascade élaborée de voies de signalisation qui permet de coordonner la prolifération cellulaire avec la réparation de l'ADN. L'ensemble de ces acteurs moléculaires constitue un réseau de réponse aux dommages de l'ADN qui est indispensable pour la stabilité génomique. Récemment chez la levure, l'activation transitoire de ce réseau a été également proposée être important dans la coordination de la transcription et de la réplication, afin d'éviter d'une part des contraintes topologiques et d'autre part la formation de structures aberrantes générées lors de conflits entre ces deux processus cellulaires essentiels. Dans la perspective d'identifier des nouveaux gènes impliqués dans ce réseau de signalisation, un crible fonctionnel in vitro précédemment établi au laboratoire a conduit à l'identification de Ddx19, une hélicase à motif DEAD-box, en tant que nouvel élément répondant à l'endommagement de l'ADN. Ddx19 interagit avec le pore nucléaire via CAN/Nup214, et il est impliqué dans l'export des ARNm grâce à son activité hélicase et ATPase, stimulé par les facteurs IP6 et Gle1. Le présent travail de thèse dévoile une nouvelle fonction de Ddx19 distincte de son rôle connu dans l'export de l'ARNm. Je pu montrer que, lors de l'induction des dommages à l'ADN par les rayons UV, Ddx19 se relocalise transitoirement de la face cytoplasmique du nucléopore vers le noyau de façon dépendant d'ATR. L'inactivation de Ddx19 entraîne des endommagements spontanées dépendant de la prolifération, démontré par l'activation de la voie de signalisation d'ATM-Chk2 et la formation de foyers nucléaires de γH2AX et 53BP1. Ces phénotypes sont concomitants avec le ralentissement des fourches de réplication qui ne peuvent plus redémarrer après leur blocage par la camptothécine. En outre, les cellules déplétées de Ddx19 présentent une forte accumulation des boucles R nucléaires, enrichi dans le compartiment nucléolaire, et aussi autour de la périphérie nucléaire. Par ailleurs, ces cellules présentent une viabilité réduite et une létalité synthétique lorsque la déplétion de Ddx19 est combinée avec l'inhibition de l'expression de la topoisomérase I. Je propose Ddx19 comme deuxième hélicase nécessaire pour la résolution des boucles R, et qui fonctionne à côté mais de façon indépendante de la Senataxin, l'hélicase précédemment connue pour résoudre ces structures in vivo chez les cellules de mammifères. Je démontre que cette nouvelle fonction de Ddx19 ne dépend pas de son interaction avec le pore nucléaire, mais plutôt de son activité hélicase et d'un résidu de sérine phosphorylée par Chk1 qui stimule sa relocalisation vers le noyau. Ces données proposent Ddx19 en tant que nouvelle ARN hélicase qui facilite la coordination de la réplication et la transcription, médiée par ATR à travers de la résolution des boucles R, préservant ainsi l'intégrité du génome. / Cells are continuously challenged by DNA damage resulting from external cues as UV light, γ-irradiation and exposure to genotoxic chemicals, as well as from endogenous stress caused by cellular metabolism. Growing evidence points to transcription as a biological process that could adversely affect genome integrity. One currently highly investigated mechanism by which transcription can induce genome instability is through the formation of R-loops, RNA:DNA hybrid structures exposing a displaced single-stranded DNA tract. These aberrant structures occur as byproducts of transcription and/or upon interference between replication and transcription, and more recently were also shown to accumulate upon disruption of mRNA biogenesis and processing. Persistent unresolved R-loops are a potent source of genomic instability as they ultimately generate double strand breaks and promote recombination events. To deal with the deleterious consequences of DNA damage, cells activate elaborate DNA damage response (DDR) pathways to delay cell division and stimulate repair of lesions, thus preserving genome stability. Recently in yeast transient DDR activation has also been proposed to be important in the coordination of transcription and replication, in order to avoid topological constraints and the formation of aberrant structures generated upon collision of their machineries. By means of an in vitro screen aimed at identifying new DDR genes, we isolated Ddx19, a DEAD-Box helicase known to be involved in mRNA export, as a novel DNA damage responsive gene. Ddx19 interacts with the nucleopore complex via nucleoporin CAN/Nup214, and is involved in mRNA remodelling and export through its ATPase and helicase activities, stimulated by IP6 and the Gle1 factor. My present thesis work unravels a novel function of Ddx19 in preserving genome stability in mammalian cells, distinct from its known role in mRNA export. I show that upon UV-induced damage, Ddx19 transiently relocalizes from the cytoplasmic face of the nucleopore to the nucleus in an ATR-dependent manner. Downregulation of Ddx19 gives rise to spontaneous, proliferation-dependent DNA damage, as determined by the specific activation of the ATM-Chk2 pathway and formation of γH2AX and 53BP1 nuclear foci. This is concomitant with the slowing down of replication forks that are unable to restart after being stalled with camptothecin. In addition, cells depleted of Ddx19 display strong accumulation of nuclear R-loops, enriched in the nucleolar compartment, and around the nuclear periphery. Moreover, these cells show low viability and exhibited synthetic lethality when combined with inhibition of topoisomerase I expression. I propose Ddx19 as a second helicase required for R-loops resolution, functioning alongside but independently of Senataxin, the first known RNA helicase to resolve these structures in vivo in mammalian cells. I provide evidence that this new function of Ddx19 does not depend on its interaction with the nuclear pore, but rather on its helicase activity and on a serine residue phosphorylated by Chk1 which promotes its relocalization into the nucleus upon damage. These data put forward Ddx19 as a novel RNA helicase that facilitates ATR-dependent coordination of DNA replication and transcription through R-loops resolution, thus preserving genome integrity.

Page generated in 0.055 seconds