• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 12
  • 6
  • 5
  • 4
  • 2
  • 1
  • Tagged with
  • 127
  • 127
  • 31
  • 24
  • 19
  • 18
  • 17
  • 17
  • 14
  • 14
  • 13
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

The role of the associated 3' to 5' exonuclease activity and processivity factor (UL42) or herpes simplex virus type 1 DNA polymerase on the fidelity of DNA replication

Song, Liping 19 May 2004 (has links)
No description available.
112

Metagenomic Analyses of Glacier Ice / Metagenomanalysen von Gletschereis

Simon, Carola 21 January 2009 (has links)
No description available.
113

Régulation dépendante du cycle cellulaire de la réparation par excision de nucléotides

Auclair, Yannick 11 1900 (has links)
La réparation par excision de nucléotides (NER) est une voie critique chez l'homme pour enlever des lésions qui déforment l’hélice d'ADN et qui bloquent à la fois la réplication et la transcription. Parmi ces lésions, il y a les dimères cyclobutyliques de pyrimidines (CPDs) et les adduits pyrimidine (6-4) pyrimidone (6-4PPs) induient par les rayons ultraviolets. L'importance physiologique de la NER est mise en évidence par l’existence de la maladie Xeroderma pigmentosum (XP), causée par des mutations affectant des gènes impliqués dans cette voie de réparation. Les personnes atteintes sont caractérisées par une photosensibilité extrême et une forte prédisposition à développer des tumeurs cutanées (plus de 1000 fois). Les patients atteints du type variant de la maladie Xeroderma pigmentosum (XPV), apparemment compétents en réparation, portent plutôt des mutations dans le gène codant pour l'ADN polymérase η (polη). Polη est une ADN polymérase translésionnelle capable de contourner avec une grande fidélité certaines lésions telles que les CPDs, qui autrement bloquent les polymérases réplicatives. Ainsi, la polη prévient la formation de mutations et permet la reprise de la synthèse d'ADN. L'objectif principal de cette thèse est d'évaluer le rôle potentiel de voies de signalisation majeures dans la régulation de la NER, dont celles régulées par la kinase ATR (Ataxia Télangiectasia and Rad3-related kinase). Suite à l'irradiation UV, ATR est rapidement activée et phosphoryle des centaines de protéines qui régulent les points de contrôle du cycle cellulaire et joue un rôle notoire dans le maintient de la stabilité génomique. Nous avons postulé qu’ATR puisse réguler la NER de manière dépendante du cycle cellulaire. Cependant, tester cette hypothèse représente un grand défi car, pour des raisons techniques, les méthodes conventionnelles n’ont pas à ce jour été adaptées pour l'évaluation de la cinétique de réparation au cours des différentes phases du cycle cellulaire. Nous avons donc développé une méthode novatrice basée sur la cytométrie en flux permettant de quantifier avec grande précision la cinétique de réparation des 6-4PPs et CPDs dans chacune des phases G0/G1, S et G2/M. Avec cette nouvelle méthode, nous avons pu démontrer que l'inhibition d'ATR ou polη résulte en une très forte inhibition de la NER exclusivement durant la phase S du cycle cellulaire. Ces études ont révélé, pour la première fois, une fonction critique pour ces protéines dans le retrait des lésions qui bloquent la réplication. En outre, nous avons démontré que la synthèse d'ADN est indispensable pour l’inhibition de la réparation en phase-S, reflétant un lien potentiel entre la NER et la réplication. Curieusement, nous avons également montré que parmi six lignées cellulaires tumorales choisies aléatoirement, trois présentent une abrogation totale de la NER uniquement pendant la phase S, ce qui indique que de nombreux cancers humains pourraient être caractérisés par un tel défaut. Nos observations pourraient avoir d'importantes implications pour le traitement du cancer. En effet, le statut de la NER semble constituer un déterminant majeur dans la réponse clinique aux médicaments chimiothérapeutiques tels que le cisplatine, qui inhibent la croissance des cellules cancéreuses via l'induction de lésions à l’ADN. / Nucleotide excision repair (NER) is a critical pathway in humans for repairing highly genotoxic helix-distorting DNA lesions that strongly block both replication and transcription. Among these lesions are ultraviolet-induced 6-4 photoproducts (6-4PPs) and cyclobutane pyrimidine dimers (CPDs). The physiological importance of NER is highlighted by individuals afflicted with Xeroderma pigmentosum (XP), who carry mutations in NER pathway genes and as such exhibit extreme photosensitivity and remarkable predisposition to cutaneous tumorigenesis (1000-fold increase). On the other hand patients with the variant form of Xeroderma pigmentosum (XPV) are considered proficient in NER, and rather carry germline mutations in the gene encoding DNA polymerase η (polη). Polη is a specialized translesion DNA polymerase able to accurately bypass certain lesions including CPDs which otherwise completely inhibit the progression of normal replicative polymerases, thereby preventing mutations and allowing the resumption of DNA synthesis. The main goal of this thesis was to elucidate the potential role in NER of major DNA damage signalling cascades, including that regulated by the ataxia telangiectasia and rad 3-related kinase (ATR). Following UV irradiation, ATR is rapidly activated and phosphorylates hundreds of proteins that regulate cell cycle checkpoints and maintain genomic stability. We postulated that ATR might regulate NER in a cell cycle-specific manner. However testing this presented a great challenge, as (for technical reasons) traditional NER assays have to date not been adapted for evaluation of repair kinetics during individual phases of the cell cycle. We therefore developed a novel flow cytometry-based assay for sensitive quantification of 6-4PPs and CPDs repair efficiency during each of G0/G1, S, and G2/M. With this new assay, we were able to show that inhibition of either ATR or polη results in strong inhibition of NER capacity exclusively during S phase of the cell cycle. This revealed, for the first time, a critical function for these proteins in removal of replication-blocking DNA adducts. In addition, we demonstrated that active DNA synthesis is required for S phase-specific repair inhibition, reflecting a potential relationship between NER and replication. Intriguingly, we also showed that among six tumor cell lines, three exhibit total abrogation of NER uniquely during S phase, indicating that many human cancers may be characterized by such a defect. Our findings therefore could harbour important implications for cancer treatment. Indeed, NER status of tumors clearly appears to constitute a major determinant in the clinical response to chemotherapeutic drugs such as cisplatin, which inhibit the growth of rapidly proliferating cancer cells through induction of replication-blocking DNA lesions.
114

Identification et caractérisation de facteurs impliqués dans la réplication et la stabilité des génomes des organelles de plantes

Parent, Jean-Sébastien 11 1900 (has links)
Comparativement au génome contenu dans le noyau de la cellule de plante, nos connaissances des génomes des deux organelles de cette cellule, soit le plastide et la mitochondrie, sont encore très limitées. En effet, un nombre très restreint de facteurs impliqués dans la réplication et la réparation de l’ADN de ces compartiments ont été identifiés à ce jour. Au cours de notre étude, nous avons démontré l’implication de la famille de protéines Whirly dans le maintien de la stabilité des génomes des organelles. Des plantes mutantes pour des gènes Whirly chez Arabidopsis thaliana et Zea mays montrent en effet une augmentation du nombre de molécules d’ADN réarrangées dans les plastides. Ces nouvelles molécules sont le résultat d’une forme de recombinaison illégitime nommée microhomology-mediated break-induced replication qui, en temps normal, se produit rarement dans le plastide. Chez un mutant d’Arabidopsis ne possédant plus de protéines Whirly dans les plastides, ces molécules d’ADN peuvent même être amplifiées jusqu’à cinquante fois par rapport au niveau de l’ADN sauvage et causer un phénotype de variégation. L’étude des mutants des gènes Whirly a mené à la mise au point d’un test de sensibilité à un antibiotique, la ciprofloxacine, qui cause des bris double brin spécifiquement au niveau de l’ADN des organelles. Le mutant d’Arabidopsis ne contenant plus de protéines Whirly dans les plastides est plus sensible à ce stress que la plante sauvage. L’agent chimique induit en effet une augmentation du nombre de réarrangements dans le génome du plastide. Bien qu’un autre mutant ne possédant plus de protéines Whirly dans les mitochondries ne soit pas plus sensible à la ciprofloxacine, on retrouve néanmoins plus de réarrangements dans son ADN mitochondrial que dans celui de la plante sauvage. Ces résultats suggèrent donc une implication pour les protéines Whirly dans la réparation des bris double brin de l’ADN des organelles de plantes. Notre étude de la stabilité des génomes des organelles a ensuite conduit à la famille des protéines homologues des polymérases de l’ADN de type I bactérienne. Plusieurs groupes ont en effet suggéré que ces enzymes étaient responsables de la synthèse de l’ADN dans les plastides et les mitochondries. Nous avons apporté la preuve génétique de ce lien grâce à des mutants des deux gènes PolI d’Arabidopsis, qui encodent des protéines hautement similaires. La mutation simultanée des deux gènes est létale et les simples mutants possèdent moins d’ADN dans les organelles des plantes en bas âge, confirmant leur implication dans la réplication de l’ADN. De plus, les mutants du gène PolIB, mais non ceux de PolIA, sont hypersensibles à la ciprofloxacine, suggérant une fonction dans la réparation des bris de l’ADN. En accord avec ce résultat, la mutation combinée du gène PolIB et des gènes des protéines Whirly du plastide produit des plantes avec un phénotype très sévère. En définitive, l’identification de deux nouveaux facteurs impliqués dans le métabolisme de l’ADN des organelles nous permet de proposer un modèle simple pour le maintien de ces deux génomes. / Compared to the nuclear genome, very little is known about the genomes of the two plant cytoplasmic organelles, the plastid and the mitochondria. Indeed, very few factors involved in either the replication or the repair of these genomes have been identified. Here we show the implication of the Whirly protein family in the maintenance of organellar DNA. Indeed, mutations in Whirly genes lead to DNA rearrangements in both Arabidopsis thaliana and Zea mays plastids. These rearrangements are the product of microhomology-mediated break-induced replication that rarely occurs in wild-type plants but increases in absence of Whirly proteins. In a mutant plant devoid of plastidial Whirly proteins, these new DNA molecules can be amplified up to fifty times the normal DNA level and cause a variegated phenotype. In the course of the study of the Whirly mutant plants, we developed a strategy, based on the use of the antibiotic ciprofloxacin, to induce DNA double-strand breaks specifically in plant organelles. The Arabidopsis mutant plants without Whirly proteins in the plastids are more sensitive to the antibiotic ciprofloxacin than wild-type plants. Accordingly, there is a much larger increase in the number of rearranged DNA molecules in the plastids of the mutant plants than in the control plants. Surprisingly, while the mutant plants devoid of Whirly proteins in the mitochondria do not show increased sensitivity to the drug, they do accumulate more rearrangements in their mitochondrial DNA compared to wild-type plants. These results suggest that the Whirly proteins are involved in the repair of DNA double-strand breaks in the plant organelle genomes. Our study of the plant organelle genome stability has lead us to a family of proteins homologous to the DNA polymerase I in bacteria. This family has been proposed to be responsible for most of the DNA-synthesis activity in the plant organelles. We bring genetic proof to support this hypothesis using mutants of the two PolI genes of Arabidopsis. The combined mutation of both genes is lethal and the single mutations cause a decrease in the relative DNA levels in the organelles, thus confirming the involvement of both genes in DNA replication. Interestingly, mutants of the PolIB but not PolIA gene shows increase sensitivity to ciprofloxacin suggesting a function in DNA repair. In line with these results, a cross between a PolIB mutant and the mutant of plastid Whirly genes resulted in plants with severe growth defects and numerous rearrangements in the plastid DNA. In conclusion, we have identified two factors involved in the metabolism of organelle DNA and proposed a simple model of how these genomes are maintained in the plant cell.
115

Régulation dépendante du cycle cellulaire de la réparation par excision de nucléotides

Auclair, Yannick 11 1900 (has links)
La réparation par excision de nucléotides (NER) est une voie critique chez l'homme pour enlever des lésions qui déforment l’hélice d'ADN et qui bloquent à la fois la réplication et la transcription. Parmi ces lésions, il y a les dimères cyclobutyliques de pyrimidines (CPDs) et les adduits pyrimidine (6-4) pyrimidone (6-4PPs) induient par les rayons ultraviolets. L'importance physiologique de la NER est mise en évidence par l’existence de la maladie Xeroderma pigmentosum (XP), causée par des mutations affectant des gènes impliqués dans cette voie de réparation. Les personnes atteintes sont caractérisées par une photosensibilité extrême et une forte prédisposition à développer des tumeurs cutanées (plus de 1000 fois). Les patients atteints du type variant de la maladie Xeroderma pigmentosum (XPV), apparemment compétents en réparation, portent plutôt des mutations dans le gène codant pour l'ADN polymérase η (polη). Polη est une ADN polymérase translésionnelle capable de contourner avec une grande fidélité certaines lésions telles que les CPDs, qui autrement bloquent les polymérases réplicatives. Ainsi, la polη prévient la formation de mutations et permet la reprise de la synthèse d'ADN. L'objectif principal de cette thèse est d'évaluer le rôle potentiel de voies de signalisation majeures dans la régulation de la NER, dont celles régulées par la kinase ATR (Ataxia Télangiectasia and Rad3-related kinase). Suite à l'irradiation UV, ATR est rapidement activée et phosphoryle des centaines de protéines qui régulent les points de contrôle du cycle cellulaire et joue un rôle notoire dans le maintient de la stabilité génomique. Nous avons postulé qu’ATR puisse réguler la NER de manière dépendante du cycle cellulaire. Cependant, tester cette hypothèse représente un grand défi car, pour des raisons techniques, les méthodes conventionnelles n’ont pas à ce jour été adaptées pour l'évaluation de la cinétique de réparation au cours des différentes phases du cycle cellulaire. Nous avons donc développé une méthode novatrice basée sur la cytométrie en flux permettant de quantifier avec grande précision la cinétique de réparation des 6-4PPs et CPDs dans chacune des phases G0/G1, S et G2/M. Avec cette nouvelle méthode, nous avons pu démontrer que l'inhibition d'ATR ou polη résulte en une très forte inhibition de la NER exclusivement durant la phase S du cycle cellulaire. Ces études ont révélé, pour la première fois, une fonction critique pour ces protéines dans le retrait des lésions qui bloquent la réplication. En outre, nous avons démontré que la synthèse d'ADN est indispensable pour l’inhibition de la réparation en phase-S, reflétant un lien potentiel entre la NER et la réplication. Curieusement, nous avons également montré que parmi six lignées cellulaires tumorales choisies aléatoirement, trois présentent une abrogation totale de la NER uniquement pendant la phase S, ce qui indique que de nombreux cancers humains pourraient être caractérisés par un tel défaut. Nos observations pourraient avoir d'importantes implications pour le traitement du cancer. En effet, le statut de la NER semble constituer un déterminant majeur dans la réponse clinique aux médicaments chimiothérapeutiques tels que le cisplatine, qui inhibent la croissance des cellules cancéreuses via l'induction de lésions à l’ADN. / Nucleotide excision repair (NER) is a critical pathway in humans for repairing highly genotoxic helix-distorting DNA lesions that strongly block both replication and transcription. Among these lesions are ultraviolet-induced 6-4 photoproducts (6-4PPs) and cyclobutane pyrimidine dimers (CPDs). The physiological importance of NER is highlighted by individuals afflicted with Xeroderma pigmentosum (XP), who carry mutations in NER pathway genes and as such exhibit extreme photosensitivity and remarkable predisposition to cutaneous tumorigenesis (1000-fold increase). On the other hand patients with the variant form of Xeroderma pigmentosum (XPV) are considered proficient in NER, and rather carry germline mutations in the gene encoding DNA polymerase η (polη). Polη is a specialized translesion DNA polymerase able to accurately bypass certain lesions including CPDs which otherwise completely inhibit the progression of normal replicative polymerases, thereby preventing mutations and allowing the resumption of DNA synthesis. The main goal of this thesis was to elucidate the potential role in NER of major DNA damage signalling cascades, including that regulated by the ataxia telangiectasia and rad 3-related kinase (ATR). Following UV irradiation, ATR is rapidly activated and phosphorylates hundreds of proteins that regulate cell cycle checkpoints and maintain genomic stability. We postulated that ATR might regulate NER in a cell cycle-specific manner. However testing this presented a great challenge, as (for technical reasons) traditional NER assays have to date not been adapted for evaluation of repair kinetics during individual phases of the cell cycle. We therefore developed a novel flow cytometry-based assay for sensitive quantification of 6-4PPs and CPDs repair efficiency during each of G0/G1, S, and G2/M. With this new assay, we were able to show that inhibition of either ATR or polη results in strong inhibition of NER capacity exclusively during S phase of the cell cycle. This revealed, for the first time, a critical function for these proteins in removal of replication-blocking DNA adducts. In addition, we demonstrated that active DNA synthesis is required for S phase-specific repair inhibition, reflecting a potential relationship between NER and replication. Intriguingly, we also showed that among six tumor cell lines, three exhibit total abrogation of NER uniquely during S phase, indicating that many human cancers may be characterized by such a defect. Our findings therefore could harbour important implications for cancer treatment. Indeed, NER status of tumors clearly appears to constitute a major determinant in the clinical response to chemotherapeutic drugs such as cisplatin, which inhibit the growth of rapidly proliferating cancer cells through induction of replication-blocking DNA lesions.
116

Identification et caractérisation de facteurs impliqués dans la réplication et la stabilité des génomes des organelles de plantes

Parent, Jean-Sébastien 11 1900 (has links)
Comparativement au génome contenu dans le noyau de la cellule de plante, nos connaissances des génomes des deux organelles de cette cellule, soit le plastide et la mitochondrie, sont encore très limitées. En effet, un nombre très restreint de facteurs impliqués dans la réplication et la réparation de l’ADN de ces compartiments ont été identifiés à ce jour. Au cours de notre étude, nous avons démontré l’implication de la famille de protéines Whirly dans le maintien de la stabilité des génomes des organelles. Des plantes mutantes pour des gènes Whirly chez Arabidopsis thaliana et Zea mays montrent en effet une augmentation du nombre de molécules d’ADN réarrangées dans les plastides. Ces nouvelles molécules sont le résultat d’une forme de recombinaison illégitime nommée microhomology-mediated break-induced replication qui, en temps normal, se produit rarement dans le plastide. Chez un mutant d’Arabidopsis ne possédant plus de protéines Whirly dans les plastides, ces molécules d’ADN peuvent même être amplifiées jusqu’à cinquante fois par rapport au niveau de l’ADN sauvage et causer un phénotype de variégation. L’étude des mutants des gènes Whirly a mené à la mise au point d’un test de sensibilité à un antibiotique, la ciprofloxacine, qui cause des bris double brin spécifiquement au niveau de l’ADN des organelles. Le mutant d’Arabidopsis ne contenant plus de protéines Whirly dans les plastides est plus sensible à ce stress que la plante sauvage. L’agent chimique induit en effet une augmentation du nombre de réarrangements dans le génome du plastide. Bien qu’un autre mutant ne possédant plus de protéines Whirly dans les mitochondries ne soit pas plus sensible à la ciprofloxacine, on retrouve néanmoins plus de réarrangements dans son ADN mitochondrial que dans celui de la plante sauvage. Ces résultats suggèrent donc une implication pour les protéines Whirly dans la réparation des bris double brin de l’ADN des organelles de plantes. Notre étude de la stabilité des génomes des organelles a ensuite conduit à la famille des protéines homologues des polymérases de l’ADN de type I bactérienne. Plusieurs groupes ont en effet suggéré que ces enzymes étaient responsables de la synthèse de l’ADN dans les plastides et les mitochondries. Nous avons apporté la preuve génétique de ce lien grâce à des mutants des deux gènes PolI d’Arabidopsis, qui encodent des protéines hautement similaires. La mutation simultanée des deux gènes est létale et les simples mutants possèdent moins d’ADN dans les organelles des plantes en bas âge, confirmant leur implication dans la réplication de l’ADN. De plus, les mutants du gène PolIB, mais non ceux de PolIA, sont hypersensibles à la ciprofloxacine, suggérant une fonction dans la réparation des bris de l’ADN. En accord avec ce résultat, la mutation combinée du gène PolIB et des gènes des protéines Whirly du plastide produit des plantes avec un phénotype très sévère. En définitive, l’identification de deux nouveaux facteurs impliqués dans le métabolisme de l’ADN des organelles nous permet de proposer un modèle simple pour le maintien de ces deux génomes. / Compared to the nuclear genome, very little is known about the genomes of the two plant cytoplasmic organelles, the plastid and the mitochondria. Indeed, very few factors involved in either the replication or the repair of these genomes have been identified. Here we show the implication of the Whirly protein family in the maintenance of organellar DNA. Indeed, mutations in Whirly genes lead to DNA rearrangements in both Arabidopsis thaliana and Zea mays plastids. These rearrangements are the product of microhomology-mediated break-induced replication that rarely occurs in wild-type plants but increases in absence of Whirly proteins. In a mutant plant devoid of plastidial Whirly proteins, these new DNA molecules can be amplified up to fifty times the normal DNA level and cause a variegated phenotype. In the course of the study of the Whirly mutant plants, we developed a strategy, based on the use of the antibiotic ciprofloxacin, to induce DNA double-strand breaks specifically in plant organelles. The Arabidopsis mutant plants without Whirly proteins in the plastids are more sensitive to the antibiotic ciprofloxacin than wild-type plants. Accordingly, there is a much larger increase in the number of rearranged DNA molecules in the plastids of the mutant plants than in the control plants. Surprisingly, while the mutant plants devoid of Whirly proteins in the mitochondria do not show increased sensitivity to the drug, they do accumulate more rearrangements in their mitochondrial DNA compared to wild-type plants. These results suggest that the Whirly proteins are involved in the repair of DNA double-strand breaks in the plant organelle genomes. Our study of the plant organelle genome stability has lead us to a family of proteins homologous to the DNA polymerase I in bacteria. This family has been proposed to be responsible for most of the DNA-synthesis activity in the plant organelles. We bring genetic proof to support this hypothesis using mutants of the two PolI genes of Arabidopsis. The combined mutation of both genes is lethal and the single mutations cause a decrease in the relative DNA levels in the organelles, thus confirming the involvement of both genes in DNA replication. Interestingly, mutants of the PolIB but not PolIA gene shows increase sensitivity to ciprofloxacin suggesting a function in DNA repair. In line with these results, a cross between a PolIB mutant and the mutant of plastid Whirly genes resulted in plants with severe growth defects and numerous rearrangements in the plastid DNA. In conclusion, we have identified two factors involved in the metabolism of organelle DNA and proposed a simple model of how these genomes are maintained in the plant cell.
117

Interaction entre yOgg1, une ADN glycosylase de la voie BER, et l’ADN polymérase réplicative Polε chez Saccharomyces cerevisiae / yOgg1, a Saccharomyces cerevisiae bifunctional DNA glycosylase involved in base excision repair of oxidative DNA damage, interacts with the replicative DNA polymerase, Polε

Essalhi, Kadija 12 December 2013 (has links)
Les dommages oxydatifs de l’ADN sont impliqués dans les processus pathologiques que sont le cancer, les maladies neurodégénératives ou le vieillissement. Ces dommages résultent en partie de l’action des espèces réactives de l’oxygène (ERO), qui proviennent du métabolisme cellulaire ou d’agents exogènes (physiques ou chimiques), et qui conduisent à différents types de lésions parmi lesquelles l’oxydation des bases de l’ADN (8-oxoguanine, 8-oxoG) ou la formation de sites abasiques AP (apurique/apyrimidique). Ces lésions, qui si elles ne sont pas éliminées conduisent à des processus de mutagenèse ou de mort cellulaire, sont prises en charge spécifiquement par le système de réparation de l’ADN par excision de base ou BER. Le BER est initié par l’action d’une ADN glycosylase, telles que la 8-oxoG-ADN glycosylase (Ogg1) chargée d’éliminer la 8-oxoG, une lésion très abondante. Une étude par « double-hybride » initiatrice de ce projet a révélé l’existence d’une interaction in vivo chez S. cerevisiae entre la protéine yOgg1 et la sous-unité catalytique de l’ADN polymérase réplicative Polε (yPol2), également impliquée dans la voie BER chez la levure. Nos travaux démontrent que yOgg1 et yPol2 interagissent bien physiquement entre elles et de façon spécifique. Une étude par troncations et mutagenèse dirigée nous a permis d’identifier le domaine 3’→5’ exonucléase de yPol2 comme faisant partie de la forme tronquée minimale de yPol2 capable d’interagir avec yOgg1. La poche du site actif de yOgg1 et/ou son voisinage immédiat pourrait contenir pour partie le site d’interaction pour yPol2. Nous observons d’ailleurs une corrélation nette entre l’activité de yOgg1 et sa capacité à interagir avec yPol2 dans la levure. De même, l’activité 3’→5’ exonucléase de yPol2 pourrait être liée à son interaction avec yOgg1. D’un point de vue fonctionnel, yPol2 stimulerait l’activité AP lyase de yOgg1 et le couplage entre l’activité ADN glycosylase et AP lyase de l’enzyme, permettant ainsi une meilleure coordination de l’étape d’excision du nucléoside endommagé et l’étape de resynthèse de l’ADN dans la voie BER. / Oxidative DNA damages are involved in pathological processes such as cancer, neurodegenerative diseases and aging. Part of these damages results from the action of reactive oxygen species (ROS), which are produced by cellular metabolism or (physical or chemical) exogenous agents. They lead to different types of DNA lesions including DNA base oxidation (8-oxoguanine, 8-oxoG) and abasic site formation (AP, apuric/apyrimidic). If not removed, these lesions lead to mutagenesis or cell death. Most of base lesions are dealt specifically by the base excision repair (BER) pathway. BER is initiated by a DNA glycosylase, such as 8-oxoG-DNA glycosylase (Ogg1) which is responsible for the removal of 8-oxoG. In previous unpublished work, a yeast two-hybrid study revealed the existence in S. cerevisiae of an interaction between yOgg1 and the catalytic subunit of the replicative DNA polymerase Polε (yPol2), also involved in the BER pathway in eukaryotes. Our work shows that yOgg1 and yPol2 physically and specifically interact with each other. Truncation and site-directed mutagenesis studies allowed us to identify the 3 ' → 5' exonuclease activity domain of yPol2 as part of the minimal form of yPol2 still able to interact with yOgg1. The active site of yOgg1 and/or its immediate vicinity may contain part of its interaction domain with yPol2. Besides, we observe a clear correlation between yOgg1 catalytic activity and its ability to interact with yPol2 in vivo. Similarly, the 3'→5' exonuclease activity of yPol2 could be useful to its interaction with yOgg1. From a functional point of view, yPol2 stimulates in vitro the AP lyase activity of yOgg1 and the coupling of both DNA glycosylase and AP lyase enzyme activity. The interaction yOgg1/yPol2 could allow a better coordination of damaged nucleoside excision and DNA re-synthesis steps in BER.
118

Teoretická studie enzymů spojených s procesem karcinogeneze: DNA polymerázy β a cytochromů P450 / Theoretical study of enzymes related to carcinogenesis: DNA polymerase β and cytochromes P450

Jeřábek, Petr January 2012 (has links)
Present doctoral thesis contributed to understanding of mechanistic principles of two enzymes participating in the process of carcinogenesis; DNA polymerase  (pol ) and cytochromes P450 (CYP). Pol  is part of the DNA base-excision repair mechanism (BER). The primary role of pol  in, the BER mechanism, is inserting a new nucleotide into a DNA strand according to Watson-Crick base pairing rules. Pol  plays an important role in the process of carcinogenesis, approximately 30 % of human tumors express pol  mutants. The ability of pol  to discriminate between "right" and "wrong" nucleotide during the insertion process is called fidelity. We employed computational methods to elucidate molecular basis of the fidelity of pol . First, the relative free energy calculation method LRA was employed to compare differences in free energies between the "right" and "wrong" nucleotide during its insertion into DNA. The results indicated a better stabilization of transition-state of the nucleophilic substitution catalyzed by pol  in the case of the "right" versus "wrong" nucleotide. This difference resulted in an 80-fold contribution to its fidelity. Further, computational methods FEP and LIE were used to examine how mutations effect fidelity of pol . Results were than correlated with experimental data...
119

Konstrukce modifikovaných DNA s vybranými reaktivními či chránícími skupinami / Construction of modified DNAs with selected reactive or protective groups

Vaníková, Zuzana January 2020 (has links)
This PhD thesis is focused on the synthesis of DNA modified with photocleavable 2- nitrobenzyl protecting groups in major groove and its applications in the regulation of gene expression in the level of transcription. In the first part of my thesis, the synthesis of photocaged 2'-deoxyribonucleosides triphosphates and their photolysis to unprotected 5-hydroxymethylated nucleotides is described. All prepared nucleoside triphosphates were good substrates for their enzymatic incorporation into DNA. Synthesized 5-(2-nitrobenzyloxy)methyl-2'-deoxyuridine-5'- monophosphate (dUNBMP) and DNA with one 5-(2-nitrobenzyloxy)methyl- modification in the sequence were used for the detailed kinetic studies of photocleavage reactions. In the second part of the thesis, the series of modified DNAs with specific sequences were prepared by primer extension (PEX) and/or polymerase chain reaction (PCR). A cleavage of prepared modified DNAs was studied by selected restriction endonucleases (REs). In all cases, the nitrobenzylated DNA fully resist the cleavage by REs. The deprotection/ photocleavage conditions for nitrobenzylated DNA were studied in the case of DNAs with positive restriction endonuclease digestion of hydroxymethylated DNA. The resulting photocleaved DNA was fully digested by REs, therefore 2-nitrobenzyl...
120

Computational Modeling of Cancer-Related Mutations in DNA Repair Enzymes Using Molecular Dynamics and Quantum Mechanics/Molecular Mechanics

Leddin, Emmett Michael 05 1900 (has links)
This dissertation details the use of computational methods to understand the effect that cancer-related mutations have on proteins that complex with nucleic acids. Firstly, we perform molecular dynamics (MD) simulations of various mutations in DNA polymerase κ (pol κ). Through an experimental collaboration, we classify the mutations as more or less active than the wild type complex, depending upon the incoming nucleotide triphosphate. From these classifications we use quantum mechanics/molecular mechanics (QM/MM) to explore the reaction mechanism. Preliminary analysis points to a novel method for nucleotide addition in pol κ. Secondly, we study the ten-eleven translocation 2 (TET2) enzyme in various contexts. We find that the identities of both the substrate and complementary strands (or lack thereof) are crucial for maintaining the complex structure. Separately, we find that point mutations within the protein can affect structural features throughout the complex, only at distal sites, or only within the active site. The mutation's position within the complex alone is not indicative of its impact. Thirdly, we share a new method that combines direct coupling analysis and MD to predict potential rescue mutations using poly(ADP-ribose) polymerase 1 as a model enzyme. Fourthly, we perform MD simulations of mutations in the protection of telomeres 1 (POT1) enzyme. The investigated variants modify the POT1-ssDNA complex dynamics and protein—DNA interactions. Fifthly, we investigate the incorporation of remdesivir and other nucleotide analogue prodrugs into the protein-RNA complex of severe acute respiratory syndrome-coronavirus 2 RNA-dependent RNA polymerase. We find evidence for destabilization throughout the complex and differences in inter-subunit communication for most of the incorporation patterns studied. Finally, we share a method for determining a minimum active region for QM/MM simulations. The method is validated using 4-oxalocrotonate, TET2, and DNA polymerase λ as test cases.

Page generated in 0.0642 seconds