• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 392
  • 294
  • 54
  • 42
  • 14
  • 10
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1239
  • 674
  • 381
  • 234
  • 155
  • 154
  • 152
  • 152
  • 116
  • 103
  • 102
  • 100
  • 92
  • 92
  • 90
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Thermoluminescence of natural quartz

Lontsi Sob, Aaron Joel January 2014 (has links)
The kinetic and dosimetric features of the main thermoluminescence peak of quartz have been investigated in unannealed as well in quartz annealed at 500˚C for 10 minutes. The main peak is found at 92 and 86˚C respectively for aliquots of unannealed and annealed samples irradiated to 10 Gy and heated at 5.0˚C/s. For each sample, the intensity of the main peak is enhanced with repetitive measurement whereas its maximum temperature is unaffected. The peak position of the main peak in each sample is independent of the irradiation dose and this, together with its fading characteristics are consistent with first-order kinetics. For low doses, typically between 2 and 10 Gy, the dose response of the main peak in each sample is linear. In the intermediate dose range from 10 to 60 Gy, the growth of the main peak in each sample is sub-linear and for greater doses, in the range from 60 Gy to 151 Gy, it is linear again. The half-life of the main peak of the unannealed sample is about 1.3 h whereas that of the annealed sample is about 1.2 h. The main peak in each sample can be approximated to a first-order glow peak. As the heating rate increases, the intensity of the main peak in each sample decreases. This is evidence of thermal quenching. The main peak in each sample is the only peak regenerated by phototransfer. The resulting phototransferred peak occurs at the same temperature as the original peak and has similar kinetic and dosimetric features. For a preheat temperature of 120˚C, the intensity of the phototransferred peak in each sample increases with illumination time up to a maximum and decreases afterwards. At longer illumination times (such as 30 min up to 1 h), no further decrease in the intensity of the phototransferred peak is observed. The traps associated with the 325˚C peak are the main source of the electrons responsible for the regenerated peak. Radioluminescence emission spectra were also measured for quartz annealed at various temperatures. Emission bands in quartz are affected by annealing and irradiation. A strong enhancement of the 3.4 eV (~366 nm) emission band is observed in quartz annealed at 500˚C. A new emission band which grows with annealing up to 1000˚C is observed at 3.7 eV (~330 nm) for quartz annealed at 600˚C. An attempt has been made to correlate the changes in radioluminescence emission spectra due to annealing with the influence of annealing on luminescence lifetimes in quartz.
62

2d dose measurement using a flat panel EPID

Lim, Seng Boh 11 1900 (has links)
The increasing use of intensity modulated radiation therapy (IMRT) to deliver conformal radiation treatment has prompted the search for a faster and more cost effective quality assurance (QA) system. The standard technique relies on the use of film for two-dimensional dose distribution verification. Although film is considered the gold standard and is widely used for this purpose, the procedures involved are relatively lengthy, labour intensive and costly for a multiple field IMRT verification. In this study, we investigate the use of an amorphous silicon electronic portal imaging device (a-Si EPID) to complement the film. The dosimetric behaviour of the device is studied both experimentally and numerically using the EGSnrc Monte Carlo simulation routine. The intrinsic build-up of the flat panel EPID was found to be 1.1 cm of water equivalent material. The response of the flat panel EPID was found to be linear between 0 and 300 cGy. To calibrate the flat panel EPID for two dimensional dose measurements, the deconvolution method was chosen. The scatter dose kernel required for this calibration method was calculated and characterized by varying the energy, spectrum and phantom material using a 6MV pencil beam. We found that flat panel EPID scatter kernel has as much as 80% more scattering power than the water scatter kernel in the region 1 cm away from the center of a 6MV pencil beam. This confirms that a flat panel EPID behaves significantly differently from water dosimetrically and requires an accurate dose scatter kernel for calibration. A 1.0 cm wide picket fence test pattern was used to test the accuracy of the kernel. Using the deconvolution method with the calculated dose kernels, the measurements from the flat panel EPID show improved agreement with the films. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
63

Polymer electret dosimetry

Chang, Charles January 1974 (has links)
The work reported in this thesis investigates the possible use of thin film teflon electrets as X-ray dosimeters. Electrets were prepared by corona- and breakdown field-charging and found to exhibit a number of properties that would render them suitable for personnel dosimetry. The stability of the residual electret charge as a function of environment was also studied and it was found that hot, humid or unshielded conditions led to rapid charge decay. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
64

A Real-Time Electronic Sound Analysis System with Graphical User Interface

Brgulja, Amir 08 1900 (has links)
Noise-induced hearing loss is a serious problem common to musical environments. Current dosimetry technology is primarily designed for industrial environments and not suited for musical settings. At present, there are no government regulations that apply to the educational music environment as it relates to monitoring and prevention of hearing loss. Also, no system exists than can serve as a proactive tool in observation and reporting of sound exposure levels with the goal of hearing conservation. Newly proposed system takes a software based approach in designing a proactive dosimetry system that can assess the risk of sound noise exposure. It provides real-time feedback trough a graphical user interface that is capable of database storage for further study.
65

Commissioning of 360⁰ Rotational Single Room ProBeam Compact™ (Varian Medical) Pencil Beam Scanning Proton Therapy System

Unknown Date (has links)
A clinical commissioning of the first 360 rotational compact Varian ProBeam scanning proton pencil beam (Varian Medical, Palo Alto, CA) system was conducted at the South Florida Proton Therapy Institute (SFPTI). The beam dosimetry and characterizations were the vital section used to verify the consistency of the treatment planning system (TPS) outputs. The integrated depth dose curves were acquired with AP CAX in water phantom utilizing a large PTW Bragg peak chamber; the dose output factors measurements were performed by using IBA PCC05 chamber at 1.5 cm water depth applying a single layer 10×10 cm2 beams and 1.1 RBE offset as recommended in TRS 398 report. Widths of the Bragg peaks ranges (Rb80-Ra80) were from 4.07 cm to 30.51 cm for the energy range 70 MeV to 220 MeV. Beam optics such as spot sizes and spot profiles were acquired in-air by using Logos scintillators with a CCD camera and the result data were from 2.33 mm to for 77 MeV to 9.70 mm for 220 MeV. In different field sizes, a comparison between the dose measured using PTW Semiflex and the AcurosPT estimated dose were performed to study the halo effect. All the measured dosimetric parameters showed that the design specifications were well achieved, and the results are suitable for being used as a part of the clinical commissioning and quality assurance program for treating patients. / Includes bibliography. / Thesis (PMS)--Florida Atlantic University, 2021. / FAU Electronic Theses and Dissertations Collection
66

Beam quality specification in kilo-voltage radiotherapy

Jozela, Sibusiso 29 May 2008 (has links)
Purpose: The purpose of this work was to compare and analyse two clinically measurable beam quality specifiers, the half value layer (HVL) and the ratio of the doses at depths 2 cm and 5 cm (D2/D5) for a range of kilovoltage modalities, and to determine whether a practical, alternative and/or better correlation exists. Methods and materials: Four x-ray units were used: two Philips RT 250 units, a Pantak HF 420 operated up to 250 kV, and a D3300 Gulmay Medical unit operated up to 300 kV. As not all these units were equipped with an internal monitor chamber, a system was used where either the first measurement was repeated at the end of each series or an external monitor chamber was employed in order to ensure output constancy. A range of HVL’s were measured on each of the energies investigated on this work, which were used clinically. A calibrated 0.6 cc ionization chamber was used in a 30 cm x 30 cm x 30 cm water phantom to measure the absorbed dose to water at depths 2 cm and 5 cm in order to investigate D2/D5 as the alternative quality index. Results: The effectiveness of using a monitor chamber in the determination of HVL has been shown to be significant in this work where HVLs differed by up to 3%. Errors incurred from using HVL have been identified. This work verified that the ratio of doses at depths 2 cm and 5 cm in water could be applied as a kilovoltage beam quality specifier in the clinical environment at low and medium energies with a well defined FSD and field size. Conclusions: The use of D2/D5 as a tool to verify the beam quality index would simplify quality control in the clinical environment. Further work would have to be done to investigate other energies. Lower energies may require the use of shallower depths in order to improve accuracy and ensure a more clinically relevant setup.
67

EVALUATING DIFFERENCES IN TEST ACHIEVEMENT OF MEDICAL DOSIMETRY STUDENTS PARTICIPATING IN INSTRUCTION WITH SYNCHRONOUS VERSUS ASYNCHRONOUS VIDEO CONSIDERING PERSONAL LEARNING STYLE AND BLOOM'S TAXONOMY LEVEL

Collins, Kevin Scott 01 August 2011 (has links) (PDF)
The purpose of this study was to determine the dominant learning style of dosimetry students. The study also investigated to see if there was a significant difference in test performance based on synchronous/asynchronous participation, specific learning style, and the Bloom's taxonomy level of the test questions. To conduct the study, 25 medical dosimetry students enrolled at an accredited university were studied. Fifteen students participated in the course through a synchronous format using live video conferencing. Ten students used streaming video for their instruction in an asynchronous format. To determine the students' learning styles, Kolb's Learning Style Inventory was used. Findings from the study indicated the most common learning styles of dosimetry students were converging and assimilating. The study also found no significant differences in test performance by students based on synchronous or asynchronous class participation, individual learning style, or the item's Bloom's taxonomy level. Even though no significant differences were found, this study offers insight to potential students and dosimetry educators about taking or offering distance education courses.
68

Avaliação do dispositivo eletrônico de imagem portal \"Portal Dosimetry\" no controle de qualidade de radioterapia de intensidade modulada / Evaluation of electronic imaging device portal \"Portal Dosimetry\" in quality control in intensity modulated radiotherapy

Watanabe, Érika Yumi 13 August 2010 (has links)
No presente trabalho serão apresentados testes de comissionamento e de avaliação da utilização do portal dosimetry, da Varian, no controle de qualidade dos planejamentos de radioterapia de intensidade modulada. Os testes de comissionamento foram realizados para caracterizar o portal dosimetry em termos dosimétricos e para avaliar a sua possível aplicação em radioterapia. Esses testes demonstraram que o portal dosimetry possui todas as características necessárias para ser utilizado em dosimetria na radioterapia tais como linearidade da resposta com a dose, independência com a taxa de dose, reprodutibilidade, dentre outras. A avaliação da utilização do portal dosimetry no controle de qualidade de IMRT foi realizada em duas etapas: avaliação da capacidade do dispositivo em detectar erros propositalmente introduzidos em fluências simples e em fluências complexas. Foram introduzidos erros de magnitude conhecida em áreas determinadas das fluências e foi realizado o controle de qualidade dessas fluências com o portal dosimetry e com mais três sistemas dosimétricos: câmara de ionização, filme e matriz de câmaras de ionização. Os dados obtidos com o portal foram comparados com os dos outros dispositivos e todos foram capazes de identificar os erros introduzidos de maneira satisfatória, sendo os valores, normalizados para a fluência original, obtidos com o dosímetro portal indênticos aos da câmara de ionização e aos da matriz de câmaras de ionização (seven29) e diferindo em até 2% dos valores obtidos com os filmes. As fluências medidas com o portal dosimetry foram avaliadas em termos quantitativos e qualitativos. Os índices da função gama fornecidos pelo software de análise do portal dosimetry não apresentaram regras definidas de comportamento em relação aos erros introduzidos e por essa razão a análise qualitativa se mostrou indispensável nos casos avaliados. / In this paper we present commissioning testing and evaluation of the use of Varians portal dosimetry in the quality assurance of intensity-modulated radiotherapy. The commissioning tests were performed to characterize the portal dosimetry in terms dosimetric and to assess the its possible application in radiotherapy. These tests demonstrated that portal dosimetry has all the characteristics to be used for dosimetry in radiotherapy such as linear response with dose, the independence of dose rate, reproducibility, and others. The evaluation of the use of portal dosimetry in quality control of IMRT was performed in two steps: assessing the ability of the device to detect errors deliberately introduced in simple and complex fluences. Errors of known magnitude were introduced in certain areas of fluences and was carried out quality control of these fluences with portal dosimetry and three dosimetric systems: ionization chamber, film and array of ionization chambers. The data obtained from the portal were compared with those of other devices and all were able to identify errors introduced satisfactorily, the values, normalized to the original fluence, obtained with the portal dosimetry were similar to the ionization chamber and the array of ion chambers (seven29) and differing in up to 2% of the values obtained with the films. The fluences measured with the portal dosimetry were evaluated both quantitatively and qualitatively. The index of the gamma function provided by software analysis of portal dosimetry showed no defined rules of behavior in relation to the errors introduced and for this reason the qualitative analysis has proved indispensable in cases evaluated.
69

The dosimetry of a highly-collimated bremsstrahlung source in air

Shannon, Michael Paul 06 July 2009 (has links)
The characterization and measurement of the spatial, temporal and energy emission of air-scattered photons, electrons and neutrons generated near 10 MV or greater accelerator-based bremsstrahlung photon sources is becoming important in many applications. The national and homeland security research community is interested in developing technologies which can detect illicit materials at substantial standoff distances in outdoor environments. These systems are referred to as "active" interrogation systems and are defined as inspection systems that take advantage of an externally applied "source" to perform traditional imaging of, or to stimulate characteristic emissions from, an inspected object. A key concern in the development of these systems is the ability to effectively predict the dose equivalents at long standoff distances from these sources in order to ascertain the operational radiation safety of said systems. Current computational radiation transport simulation tools have the ability to effectively model these systems; however, a paucity of experimental data exists in comparing the results of these simulations. A methodology to assess the radiation dose surrounding a high-energy bremsstrahlung-based accelerator system for national defense applications was developed. Fluence-to-dose conversion coefficients for the International Commission on Radiation Units and Measurements operational quantity ambient dose equivalent were calculated for photons and electrons up to 25 MeV utilizing the Los Alamos National Laboratory Monte Carlo N-Particle code, MCNP5 Version 1.51. Special consideration was given to the treatment of secondary charged particle equilibrium in all simulations. An extensive set of system simulations was performed to model a prototype high-energy bremsstrahlung-based accelerator system to obtain photon, electron and neutron fluence spectra. These fluence data were folded with the calculated ambient dose equivalent conversion coefficients as well as previously published effective dose conversion coefficients. A set of integral air-scatter measurements for accelerator-generated primary and secondary radiations (photon and neutron) were performed around the prototype system in order to provide a comparative data set from which to determine the total dose equivalent both in the beam (on-axis) and outside of the beam (off-axis).
70

Post implant dosimetric analysis for prostate brachytherapy

Haworth, Annette January 2005 (has links)
[Truncated abstract] Purpose: Permanent prostate brachytherapy (PPB) as a treatment option for prostate cancer requires implantation of 80-150 radioactive iodine-125 (I-125)

Page generated in 0.1394 seconds