361 |
Suppressed Carrier Scattering in Cadmium Sulfide-Encapsulated Lead Sulfide Nanocrystal FilmsRijal, Upendra 08 August 2014 (has links)
No description available.
|
362 |
Time Resolved Optical Spectroscopy of Colloidal PbS NanosheetsNeupane, Chandra Prasad, Neupane 24 July 2018 (has links)
No description available.
|
363 |
A PHOTOLUMINESCENCE SCALING STUDY OF CdSe/ZnSe SELF ASSEMBLED QUANTUM DOTSJONES, ROBERT A. 03 December 2001 (has links)
No description available.
|
364 |
Electrical Transport Measurement of Niobium Thin Superconducting Film Above An Array of Magnetic Quantum DotsSONG, YONG 25 August 2008 (has links)
No description available.
|
365 |
Confined States in GaAs-based Semiconducting NanowiresShi, Teng 03 June 2016 (has links)
No description available.
|
366 |
Design and Evaluation of a Fiber Optic Shape Tracker for Use as a Navigational Aid in Endovascular Guidewires and CathetersRinehart, Benjamin Stewart 03 June 2016 (has links)
No description available.
|
367 |
Metal Enhanced Fluorescence in CdSe Quantum Dots by Gold Thin FilmsDesai, Darshan B. 03 October 2011 (has links)
No description available.
|
368 |
Solution-based analysis of individual perovskite quantum dots and coupled quantum dot dimers using nanoplasmonic tweezersZhang, Hao 16 September 2022 (has links)
Cesium lead halide perovskite quantum dots (PQDs) provide an extraordinary solution-based method to fabricate high-performance solar cells, luminescent lightemitting devices, highly coherent single-photon quantum sources, and studying quantum mechanisms for quantum computing technologies. In these applications, characterizing heterogeneity and observing coupling between dots is critical. In this thesis, we use double-nanohole (DNH) optical tweezers to realize single trapping for PQDs in solution. We can estimate the size of an individual dot by studying thermal fluctuations and correlate it to emission energy shifts from quantum confinement. Based on single trapping experiment, we also use the same setup to capture a second dot by using the DNH tweezer and observe a systematic red-shift of 1.1 ± 0.6 meV in the emission wavelength upon multiple repeated measurements. Theoretical analysis shows that the experiment results are consistent with Förster resonant energy transfer (FRET), which has been proposed to obtain entanglement between colloidal quantum dots for quantum information applications. The value of the FRET is quite large when compared with the confined quantum dots and it is exciting for FRET to generate entanglement for quantum information processing applications (e.g. quantum logic gates). In the thesis, we have proved that our method allows for in-situ sizing of individual PQDs for the first time, which is relevant for improving the growth process and does not require expensive techniques. It also enables future work to search and select two dots that are nominally identical. Optical trapping with DNHs fabricated using colloidal lithography can be used to control PQD growth in-situ and enables further studies of the coupling of quantum dots at a small distance with quantum information applications. / Graduate
|
369 |
The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in miceBargheer, D., Giemsa, A., Freund, B., Heine, M., Waurisch, C., Stachowski, G.M., Hickey, Stephen G., Eychmüller, A., Heeren, J., Nielsen, P. 09 January 2015 (has links)
No / (51)Cr-labeled, superparamagnetic, iron oxide nanoparticles ((51)Cr-SPIOs) and (65)Zn-labeled CdSe/CdS/ZnS-quantum dots ((65)Zn-Qdots) were prepared using an easy, on demand, exchange-labeling technique and their particokinetic parameters were studied in mice after intravenous injection. The results indicate that the application of these heterologous isotopes can be used to successfully mark the nanoparticles during initial distribution and organ uptake, although the (65)Zn-label appeared not to be fully stable. As the degradation of the nanoparticles takes place, the individual transport mechanisms for the different isotopes must be carefully taken into account. Although this variation in transport paths can bring new insights with regard to the respective trace element homeostasis, it can also limit the relevance of such trace material-based approaches in nanobioscience. By monitoring (51)Cr-SPIOs after oral gavage, the gastrointestinal non-absorption of intact SPIOs in a hydrophilic or lipophilic surrounding was measured in mice with such high sensitivity for the first time. After intravenous injection, polymer-coated, (65)Zn-Qdots were mainly taken up by the liver and spleen, which was different from that of ionic (65)ZnCl2. Following the label for 4 weeks, an indication of substantial degradation of the nanoparticles and the release of the label into the Zn pool was observed. Confocal microscopy of rat liver cryosections (prepared 2 h after intravenous injection of polymer-coated Qdots) revealed a colocalization with markers for Kupffer cells and liver sinusoidal endothelial cells (LSEC), but not with hepatocytes. In J774 macrophages, fluorescent Qdots were found colocalized with lysosomal markers. After 24 h, no signs of degradation could be detected. However, after 12 weeks, no fluorescent nanoparticles could be detected in the liver cryosections, which would confirm our (65)Zn data showing a substantial degradation of the polymer-coated CdSe/CdS/ZnS-Qdots in the liver.
|
370 |
Synthesis of radioactively labelled CdSe/CdS/ZnS quantum dots for in vivo experimentsStachowski, G.M., Bauer, C., Waurisch, C., Bargheer, D., Nielsen, P., Heeren, J., Hickey, Stephen G., Eychmüller, A. 17 November 2014 (has links)
No / During the last decades of nanoparticles research, many nanomaterials have been developed for applications in the field of bio-labelling. For the visualization of transport processes in the body, organs and cells, luminescent quantum dots (QDs) make for highly useful diagnostic tools. However, intercellular routes, bio-distribution, metabolism during degradation or quantification of the excretion of nanoparticles, and the study of the biological response to the QDs themselves are areas which to date have not been fully investigated. In order to aid in addressing those issues, CdSe/CdS/ZnS QDs were radioactively labelled, which allows quantification of the QD concentration in the whole body or in ex vivo samples by gamma-counting. However, the synthesis of radioactively labelled QDs is not trivial since the coating process must be completely adapted, and material availability, security and avoidance of radioactive waste must be considered. In this contribution, the coating of CdSe/CdS QDs with a radioactive (65)ZnS shell using a modified, operator-safe, SILAR procedure is presented. Under UV illumination, no difference in the photoluminescence of the radioactive and non-radioactive CdSe/CdS/ZnS colloidal solutions was observed. Furthermore, a down-scaled synthesis for the production of very small batches of 5 nmol QDs without loss in the fluorescence quality was developed. Subsequently, the radio-labelled QDs were phase transferred by encapsulation into an amphiphilic polymer. gamma-counting of the radioactivity provided confirmation of the successful labelling and phase transfer of the QDs.
|
Page generated in 0.0686 seconds