• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 7
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 51
  • 51
  • 18
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Dam-break Induced Scour and Pore Water Pressure Variations Around a Vertical Structure

Rajaie, Marieh 10 December 2021 (has links)
Coastal areas in many parts of the world are vulnerable to tsunami waves. Large tsunamis are strong enough to bring about a substantial amount of sediment mobilization. Several post-tsunami field investigations performed in recent years have documented destruction induced by scouring process. For example, the 1993 Nicaraguan earthquake centred 100km off the Nicaraguan coast caused devastating tsunami-induced scour around structures and bridges (Satake et al., 1993). Differences in the scour depths were related to soil properties, shapes of structures, and tsunami hydrodynamics (Jayaratne et al., 2016). Furthermore, depending on the soil permeability, the flow and pressure propagate at different speeds within the soil, which affects water table fluctuations and the soil strength (e.g., Tonkin et al., 2003; Yeh and Li 2008). The primary objective of this research was to study the effect of different inland-propagating dam-break bore heights on pore pressure variations and scour evolution in saturated beds with two different bed slopes (i.e., zero and +5% slope) by performing comprehensive laboratory studies at a 1:40 scale. To achieve the objective, tsunami-like dam-break bores generated by rapidly opening a swing gate and propagated towards and over a sediment section and hit a structure centred within a sediment bed. The secondary objective of this experimental investigation was finding a relation between scour depths and pore pressure values as a function of still-to-impoundment water depth ratio. The results of this experimental investigation showed that effective pore pressures were consistently greater in the front face of a model than in the side face. Besides that, the highest effective pore pressures took place near the saturated bed surface. Such that, due to the propagation of supercritical bores the maximum effective pore pressure in the bottom of the front corner was 50% larger than the exact same location in the side face. While, this difference decreased to 10% in the case of subcritical bores. For the same hydrodynamic bore conditions, the maximum difference between effective pore pressure in the two faces of the model reduced by 70% in the inclined bed test than the horizontal bed tests and this difference was only 15%. However, the peak effective pore pressure around the model doubled in the inclined bed tests compared to the horizontal ones. The 5% upsloping decreased the maximum scour depths by two times as a result of the same hydrodynamic loading conditions.
12

Numerical Modeling of the Initial Stages of Dam-Break Problems

Esmaeeli Mohsenabadi, Saeid 23 November 2021 (has links)
Cases of dam failure occur around the world almost each year. Dam failures can result in the formation and propagation of fast-moving unsteady flows that can cause loss of life as well as significant environmental and economic consequences in downstream flooded areas. The initial stages of a dam break are important due to wave-breaking front and the associated turbulence. Furthermore, characteristics of the river bed downstream of the dam (topography and bathymetry) as well as the presence of obstacles in the dam break wave path such as man-made or natural obstacles like bridges, trees, and local sills affect flow dynamics, which can lead to the formation of hydraulic jumps and the reflection of the flood wave. Accordingly, the precise prediction of flood parameters such as arrival times, free surface profiles, and flow velocity profiles is essential in order to mitigate flood hazards. This study aimed to assess the performance of various turbulence models in predicting and estimating dam-break flows and related positive and negative flood wave characteristics over different downstream bed conditions. Three-dimensional (3-D) Computational Fluid Dynamics (CFD) models were created to solve the unsteady Reynolds equations in order to determine the initial stages of the free surface profiles over dry and wet beds and to investigate the generation and propagation of dam-break flows and reflected flood waves in the presence of a bed obstacle. The performance of different Reynolds-averaged Navier-Stokes (RANS) turbulence models has been investigated, and the standard k-ε, RNG k-ε, realizable k-ε, k-ω SST, and v^2-f turbulence models have been studied using OpenFOAM software. Dam-breaks were modelled using the Volume of Fluid (VOF) method employing the Finite Volume Method (FVM). Both qualitative and quantitative comparisons of numerical simulations with laboratory experiments were completed in order to assess the suitability of different turbulence models. The results of the first study showed that the RNG k-ε model exhibited better performance in capturing the flood wave free surface profiles over both dry- and wet-bed downstream conditions, while from the second study, it was concluded that the k-ω SST model was able to accurately predict the formation and propagation of reflected waves against a bottom obstacle in terms of free surface profiles and negative bore propagation speeds.
13

Approximate Analytical Solution and Laboratory Experiments for Dam-Break Wave Tip Region in Triangular Channels

Wang, B., Zhang, F., Liu, X., Guo, Yakun, Zhang, J., Peng, Y. 22 March 2022 (has links)
Yes / Solutions for dam-break flow mainly developed for rectangular channels are not applicable to prediction of the propagation of the dam-break wave in frictional triangular channels. This study presents an approximate solution considering the frictional effect on the dam-break flow in a dry horizontal triangular channel. Wave tip velocity is solved by an implicit formula for the product of time and resistance coefficients. All other hydraulic properties in the wave tip region can be expressed as explicit functions of wave tip velocity. Meanwhile, laboratory experiments have been performed for obtaining water surface profiles of dam-break flow from which the position and velocity of the wave tip front have been derived. Results show that retardation of the wave front position is more significant with the increases in both resistance and time. The proposed analytical solution shows satisfactory agreement with measurements, and clarifies how the behavior of the dam-break wave tip is affected by channel geometry.
14

A novel explicit-implicit coupled solution method of SWE for long-term river meandering process induced by dam break

Zheng, X-G., Pu, Jaan H., Chen, R-D., Liu, X-N., Shao, Songdong 01 May 2016 (has links)
Yes / Large amount of sediment deposits in the reservoir area can cause dam break, which not only leads to an immeasurable loss to the society, but also the sediments from the reservoir can be transported to generate further problems in the downstream catchment. This study aims to investigate the short-to-long term sediment transport and channel meandering process under such a situation. A coupled explicit-implicit technique based on the Euler-Lagrangian method (ELM) is used to solve the hydrodynamic equations, in which both the small and large time steps are used separately for the fluid and sediment marching. The main feature of the model is the use of the Characteristic-Based Split (CBS) method for the local time step iteration to correct the ELM traced lines. Based on the solved flow field, a standard Total Variation Diminishing (TVD) finite volume scheme is applied to solve the sediment transportation equation. The proposed model is first validated by a benchmark dambreak water flow experiment to validate the efficiency and accuracy of ELM modelling capability. Then an idealized engineering dambreak flow is used to investigate the long-term downstream channel meandering process with nonuniform sediment transport. The results showed that both the hydrodynamic and morphologic features have been well predicted by the proposed coupled model. / This research work is supported by Sichuan Science and Technology Support Plan (2014SZ0163), Start-up Grant for the Young Teachers of Sichuan University (2014SCU11056), and Open Research Fund of the State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (SKLH 1409; 1512).
15

Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface.

Shao, Songdong, Lo, E.Y.M. January 2003 (has links)
No / An incompressible smoothed particle hydrodynamics (SPH) method is presented to simulate Newtonian and non-Newtonian flows with free surfaces. The basic equations solved are the incompressible mass conservation and Navier¿Stokes equations. The method uses prediction¿correction fractional steps with the temporal velocity field integrated forward in time without enforcing incompressibility in the prediction step. The resulting deviation of particle density is then implicitly projected onto a divergence-free space to satisfy incompressibility through a pressure Poisson equation derived from an approximate pressure projection. Various SPH formulations are employed in the discretization of the relevant gradient, divergence and Laplacian terms. Free surfaces are identified by the particles whose density is below a set point. Wall boundaries are represented by particles whose positions are fixed. The SPH formulation is also extended to non-Newtonian flows and demonstrated using the Cross rheological model. The incompressible SPH method is tested by typical 2-D dam-break problems in which both water and fluid mud are considered. The computations are in good agreement with available experimental data. The different flow features between Newtonian and non-Newtonian flows after the dam-break are discussed.
16

Numerical Modeling of Tsunami-induced Hydrodynamic Forces on Free-standing Structures Using the SPH Method

St-Germain, Philippe 23 November 2012 (has links)
Tsunamis are among the most terrifying and complex physical phenomena potentially affecting almost all coastal regions of the Earth. Tsunami waves propagate in the ocean over thousands of kilometres away from their generating source at considerable speeds. Among several other tsunamis that occurred during the past decade, the 2004 Indian Ocean Tsunami and the 2011 Tohoku Tsunami in Japan, considered to be the deadliest and costliest natural disasters in the history of mankind, respectively, have hit wide stretches of densely populated coastal areas. During these major events, severe destruction of inland structures resulted from the action of extreme hydrodynamic forces induced by tsunami flooding. Subsequent field surveys in which researchers from the University of Ottawa participated ultimately revealed that, in contrast to seismic forces, such hydrodynamic forces are not taken into proper consideration when designing buildings for tsunami prone areas. In view of these limitations, a novel interdisciplinary hydraulic-structural engineering research program was initiated at the University of Ottawa, in cooperation with the Canadian Hydraulic Centre of the National Research Council, to help develop guidelines for the sound design of nearshore structures located in such areas. The present study aims to simulate the physical laboratory experiments performed within the aforementioned research program using a single-phase three-dimensional weakly compressible Smoothed Particle Hydrodynamics (SPH) numerical model. These experiments consist in the violent impact of rapidly advancing tsunami-like hydraulic bores with individual slender structural elements. Such bores are emulated based on the classic dam-break problem. The quantitatively compared measurements include the time-history of the net base horizontal force and of the pressure distribution acting on columns of square and circular cross-sections, as well as flow characteristics such as bore-front velocity and water surface elevation. Good agreement was obtained. Results show that the magnitude and duration of the impulsive force at initial bore impact depend on the degree of entrapped air in the bore-front. The latter was found to increase considerably if the bed of the experimental flume is covered with a thin water layer of even just a few millimetres. In order to avoid large fluctuations in the pressure field and to obtain accurate simulations of the hydrodynamic forces, a Riemann solver-based formulation of the SPH method is utilized. However, this formulation induces excessive numerical diffusion, as sudden and large water surface deformations, such as splashing at initial bore impact, are less accurately reproduced. To investigate this particular issue, the small-scale physical experiment of Kleefsman et al. (2005) is also considered and modeled. Lastly, taking full advantage of the validated numerical model to better understand the underlying flow dynamics, the influence of the experimental test geometry and of the bed condition (i.e. dry vs. wet) is investigated. Numerical results show that when a bore propagates over a wet bed, its front is both deeper and steeper and it also has a lower velocity compared to when it propagates over a dry bed. These differences significantly affect the pressure distributions and resulting hydrodynamic forces acting on impacted structures.
17

Investigation of floodwave propagation over natural bathymetry using a three-dimensional numerical model

Horna Munoz, Daniel Vicente 15 December 2017 (has links)
The current standard of simulating flood flow in natural river reaches is based on solving the 1-D or 2-D St. Venant equations or using hybrid 1-D/2-D models based on the same equations. These models are not always able to accurately predict floodwave propagation, especially around and downstream of regions where 3-D effects become important, or at times when the main assumptions associated with these models are violated (e.g. flow becomes pressurized due to presence of a hydraulic structure like a bridge or a culvert). A 3-D modeling approach, though computationally much more expensive, is not subject to such limitations and should be able to predict accurately predict floodwave propagation even in regions where 3-D effects are expected to be significant. This dissertation describes the development and validation of a 3-D time-accurate RANS-based model to study flood-related problems in natural environments. It also discusses how results from these 3-D simulations can be used to better calibrate lower order models. Applications are included where the flow becomes pressurized during high flow conditions and the sediment entrainment potential of the flow during the flooding event is estimated. Another important category of applications discussed in the present study are floodwave propagation induced by a sudden dam break failure. Results show that 2-D models show fairly large differences with 3-D model predictions especially in regions where 3-D effects are expected to be significant (e.g. near channel-floodplain transition, in highly curved channels, near hydraulic structures). The study also discusses the use of the validated 3-D model as an engineering design tool to identify the optimum solution for flood protection measures intended to reduce flooding in the Iowa River near Iowa City. 3-D simulation results are also used to discuss hysteresis effects in the relationship between bed shear stress and the stage/discharge. Such effects need to be taken into consideration to accurately estimate erosion associated with the passage of a floodwave.
18

Level-set finite element simulation of free-surface flow

Lee, Haegyun 01 January 2007 (has links)
This dissertation presents a study on the development of a numerical model aimed at simulating free surface flow, which still remains an active research area. Modeling these processes is very challenging since the interface between air and water is characterized by sharp discontinuities in fluid properties and flow characteristics due to different densities, viscosities, surface tension and consequent discontinuities in spatial gradients of velocity and pressure. The constraint of incompressibility poses another difficulty on the efficient design of algorithms. Recently, the level set method has emerged as a powerful tool for evolving interfaces in computational science and engineering for a wide range of applications while the finite element method has been long known for its geometrical flexibility. An effort to combine these two methods is made in this study. Several benchmark problems are used for the test of the developed code in view of temporal and spatial accuracy. Then, the capability and efficiency of the model are extended with advanced turbulence models and parallel algorithm. The model is applied to problems of practical importance in hydraulics, including hydraulic jump under a sluice gate and the design of spillways for fish migration. The main focus is on the capturing of free surface and identifying and understanding of the vortical structures and nonhydrostatic pressure distribution. The model has proved to be very effective for these purpose. The new technique dealing with air-water interface in a more physically accurate way is introduced for future development and the new method is applied to the problems of static equilibrium for validation.
19

Two-layer flow behaviour and the effects of granular dilatancy in dam-break induced sheet-flow

Spinewine, Benoit 02 December 2005 (has links)
In case of exceptional floods induced by the failure of a dam, huge amounts of sediments may be eroded. This results in large-scale modifications of the valley morphology and may drastically increase the resulting damages. The objective of the research is to advance the understanding of sediment transport under dam-break flows. For such highly erosive and transient floods, it is crucial to account explicitly for sediment inertia, and therefore traditional “clear-water” modelling approaches are largely inappropriate. The present approach relies on a two-layer idealisation of the flow behaviour. Separating a clear-water flow region from the underlying sediment bed, the transported sediments are confined in a flow layer of finite thickness, endowed with its proper inertia, density and velocity. The thesis also pinpoints granular dilatancy as an essential mechanism of interaction between the layers. When passing from a solid-like to a fluid-like behaviour as they are entrained by the flow, the eroded sediment grains dilate along the vertical, and this generates vertical exchanges of mass and momentum that should be accounted for. The thesis proceeds first with experimental investigations. Laboratory dam-break waves are reproduced in a dedicated flume, exploring different bed configurations and sediment densities. Imaging observations are used to support the proposed phenomenological description of the flow. Within a shallow-water framework, theoretical and numerical endeavours are then developed to investigate the implications on the flow dynamics of the two essential contributions of the proposed description, i.e. the two-layer flow behaviour, and the effects of granular dilatancy.
20

Numerical Modeling of Tsunami-induced Hydrodynamic Forces on Free-standing Structures Using the SPH Method

St-Germain, Philippe 23 November 2012 (has links)
Tsunamis are among the most terrifying and complex physical phenomena potentially affecting almost all coastal regions of the Earth. Tsunami waves propagate in the ocean over thousands of kilometres away from their generating source at considerable speeds. Among several other tsunamis that occurred during the past decade, the 2004 Indian Ocean Tsunami and the 2011 Tohoku Tsunami in Japan, considered to be the deadliest and costliest natural disasters in the history of mankind, respectively, have hit wide stretches of densely populated coastal areas. During these major events, severe destruction of inland structures resulted from the action of extreme hydrodynamic forces induced by tsunami flooding. Subsequent field surveys in which researchers from the University of Ottawa participated ultimately revealed that, in contrast to seismic forces, such hydrodynamic forces are not taken into proper consideration when designing buildings for tsunami prone areas. In view of these limitations, a novel interdisciplinary hydraulic-structural engineering research program was initiated at the University of Ottawa, in cooperation with the Canadian Hydraulic Centre of the National Research Council, to help develop guidelines for the sound design of nearshore structures located in such areas. The present study aims to simulate the physical laboratory experiments performed within the aforementioned research program using a single-phase three-dimensional weakly compressible Smoothed Particle Hydrodynamics (SPH) numerical model. These experiments consist in the violent impact of rapidly advancing tsunami-like hydraulic bores with individual slender structural elements. Such bores are emulated based on the classic dam-break problem. The quantitatively compared measurements include the time-history of the net base horizontal force and of the pressure distribution acting on columns of square and circular cross-sections, as well as flow characteristics such as bore-front velocity and water surface elevation. Good agreement was obtained. Results show that the magnitude and duration of the impulsive force at initial bore impact depend on the degree of entrapped air in the bore-front. The latter was found to increase considerably if the bed of the experimental flume is covered with a thin water layer of even just a few millimetres. In order to avoid large fluctuations in the pressure field and to obtain accurate simulations of the hydrodynamic forces, a Riemann solver-based formulation of the SPH method is utilized. However, this formulation induces excessive numerical diffusion, as sudden and large water surface deformations, such as splashing at initial bore impact, are less accurately reproduced. To investigate this particular issue, the small-scale physical experiment of Kleefsman et al. (2005) is also considered and modeled. Lastly, taking full advantage of the validated numerical model to better understand the underlying flow dynamics, the influence of the experimental test geometry and of the bed condition (i.e. dry vs. wet) is investigated. Numerical results show that when a bore propagates over a wet bed, its front is both deeper and steeper and it also has a lower velocity compared to when it propagates over a dry bed. These differences significantly affect the pressure distributions and resulting hydrodynamic forces acting on impacted structures.

Page generated in 0.0432 seconds