• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 93
  • 54
  • 26
  • 23
  • 10
  • 6
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 272
  • 72
  • 59
  • 57
  • 51
  • 49
  • 48
  • 33
  • 30
  • 29
  • 28
  • 28
  • 28
  • 27
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Preview based Semi-Active Suspension Control

Thamarai Kannan, Harish Kumar 30 May 2024 (has links)
While semi-active suspensions help improve the ride comfort and road holding capacity of the vehicle, they tend to be reactive in nature and thus leave a lot of room for improvement. Incorporating road preview data allows these suspensions to become more proactive rather than reactive and helps achieve a higher level of performance. A lot of preview-based control algorithms in literature tend to require high computational effort to arrive at the optimal parameters thus making it difficult to implement in real time. Other algorithms tend to be based upon lookup tables which classify the road input into different categories and hence lose their effectiveness when mixed types of road profiles are encountered that are difficult to classify. Thus a novel control algorithm is developed which is easy to implement online and more responsive to the varying road profiles that are encountered by the vehicle. A numerical methods-based semi-active suspension control algorithm and a Model Predictive Control(MPC)-based semi-active suspension control algorithm are developed that can leverage the data from the upcoming road profile to increase the ride comfort of the vehicle. The numerical methods-based algorithm is developed for the sole purpose of determining the maximum possible ride comfort that can be achieved using semi-active dampers capable of altering their damping characteristics every 0.01 seconds. The MPC-based algorithm is a more realistic algorithm that can be implemented in real-time and achieves on average 70% of the ride comfort that the numerical methods-based algorithm can with minimal computational effort. / Master of Science / Semi-active suspensions help cars ride more smoothly and handle better on the road. However, they often react to bumps and potholes only after hitting them, which means there's room for improvement. By using information about the road ahead, these suspensions can adjust before reaching rough spots, making the ride even better. To make this work, a new control system was developed. This system includes two parts. The first part uses detailed calculations to find the best possible comfort level, adjusting the suspension every 0.01 seconds. This method shows the highest comfort that can be achieved but is too complex for everyday use. The second part uses a simpler method called Model Predictive Control (MPC). This part is practical for real-time driving and achieves about 70% of the best possible comfort. It doesn't need as much computing power and can quickly adapt to different road conditions, making it ideal for normal driving. This new system improves driving comfort and safety by making suspensions smarter and more efficient.
62

Computational and Experimental Investigation of Seismic Structural Fuse Shapes for Structural Systems

Nguyen, Trai Ngoc 19 September 2022 (has links)
Structural fuses are ductile elements of a structure that are designed to yield and protect the surrounding members from damage, and then be replaceable after a major seismic event. A promising type of seismic structural fuse consists of a steel plate with engineered cutouts leaving a configuration of shear-acting links remaining. There have been several studies on various cutout patterns for shear-acting structural fuses including butterfly-shaped links, hourglass-shaped links, elliptical holes, and link shapes obtained from topology optimization. In most cases, the links are designed to undergo flexural yielding as it is believed to exhibit more ductility than other limit states. However, computational and experimental studies on the shear yielding limit state are limited. Additionally, the transition between shear dominated and flexural dominated limit states has not been previously investigated. Hence, a systematic and thorough study on the different limit states of these structural fuse shapes is necessary to provide better understanding on the structural behavior of each shape and accurately predict the controlling limit state during a seismic event. In addition, a previous study recognized that delaying shear buckling while promoting yielding is a way to improve the seismic performance of shear-acting structural fuses. However, the resulting new topologies were not experimentally validated. Furthermore, the computational study revealed that large localized plastic strain is one major challenge for these optimized configurations which might lead to potential for fracture. With the goals of filling the gaps in previous research, a computational and experimental program was conducted to (1) understand seismic performance of five structural fuse shapes, (2) develop a new ductile structural fuse shape with both buckling and fracture resistance, and (3) create design guidelines for practical design. This study consisted of the following parts (a) Creation of a new structural fuse shape called the Tied Butterfly Shape, (b) An experimental program with 20 specimens categorized into five groups including the shape created using topology optimization to resist buckling, the new shape called Tied Butterfly Shape, the butterfly shape, the hourglass shape and the elliptical holes, (c) Use of finite element models to better understand and interpret test data, (d) Two computational parametric studies conducted to investigate the effect of geometrical parameters on structural behavior of the optimized shape and Tied Butterfly Shape, (e) Development of design recommendations for each structural fuse shape. The computational and experimental results reported in this dissertation demonstrate that these structural fuse shapes are capable of improving the seismic performance of buildings. The presented design recommendations allow designers and researchers to continue exploring these structural fuse shapes. / Doctor of Philosophy / Structural fuses are ductile elements of a structure that are designed to yield and protect the surrounding members from damage, and then be replaceable after a major seismic event. Several studies on various cutout patterns for shear-acting structural fuses including butterfly-shaped links, hourglass-shaped links, elliptical holes, and link shapes obtained from topology optimization, reported that they offer several advantages for use in structural systems. Nevertheless, systematic studies on key limit states of these structural fuse shapes are limited. In addition, some analytical results have not been validated by experiments. The research work provides a comprehensive study on these structural fuse shapes. First, generalized design equations are derived using plastic mechanism analysis and key limit states of these structural fuse shapes are investigated. Second, an experimental program was conducted to further understand the cyclic behavior of these shapes associated with each limit state (i.e flexural yielding, shear yielding, lateral torsional buckling, transition between the flexural and shear yielding limit states). Then, nonlinear finite element modeling was implemented to validate against experimental results and provide better understanding of the behavior of the specimens which is not obvious during the test. Lastly, design recommendations are developed for each structural fuse shape.
63

The use of tuned mass dampers to control annoying floor vibrations

Rottmann, Cheryl E. 18 September 2008 (has links)
Floor vibrations due to occupancy activities on a floor are sometimes annoying to the occupants. Correcting floor vibrations is difficult and can be expensive. The use of tuned mass dampers to control annoying floor vibrations is sometimes a viable solution. Tuned mass dampers (TMDs) have been used primarily to control only one or two modes of vibration of a floor. Experimental research was performed using prototype TMDs to control one, two, and three modes of vibration of various floors. Results from this research are presented in this thesis. Analytical research, performed to obtain information about floor vibration characteristics, is presented and used for the initial design of TMDs and placement of TMDs on a floor. Also, computer models of the floors with TMDs to control one, two, and three modes of vibration were analyzed to obtain further information about changes in floor response and vibration characteristics. This research was performed to provide further insight on the effectiveness of TMDs to control one, two, and three modes of floor vibration and the effects of TMDs on floor vibration characteristics. / Master of Science
64

Behavior of Magneto-Rheological Fluids Subject to Impact and Shock Loading

Norris, James Alexander 04 August 2003 (has links)
Investigations on the design of controllable magnetorheological (MR) fluid devices have focused heavily on low velocity and low frequency applications. The extensive work in this area has led to a good understanding of MR fluid properties at low velocities and frequencies. However, the issues concerning MR fluid behavior in impact and shock applications are relatively unknown. To investigate MR fluid properties in this regime, MR dampers were subjected to impulsive loads. A drop-tower test facility was developed to simulate the impact events. The design includes a guided drop-mass released from variable heights to achieve different impact energies. Five drop-heights and two fundamental MR damper configurations were tested. The two configurations were a double-ended piston and a mono-tube with nitrogen accumulator. To separate the dynamics of the MR fluid from the dynamics of the current source, each damper received a constant supply current before the impact event. A total of five supply currents were investigated for each impact velocity. After reviewing the results, it was concluded that the effect of energizing the MR fluid only leads to "controllability" below a certain fluid velocity for the double-ended design. In other words, until the fluid velocity dropped below some threshold, the MR fluid behaved as if it was not energized, regardless of the strength of the magnetic field. Controllability was defined when greater supply currents yielded larger damping forces. For the mono-tube design, it was shown that the MR fluid was unable to travel through the gap fast enough during the initial impact. Consequently, the damper piston and accumulator piston traveled in unison until the accumulator bottomed out. After which, the fluid was forced through the gap. In conclusion, the two designs were compared and general recommendations on designing MR dampers for impulsive loading were made. Possible directions for future research were presented as well. / Master of Science
65

Experimental Evaluation of Semiactive Magneto-Rheological Suspensions for Passenger Vehicles

Pare, Christopher A. 17 June 1998 (has links)
This study experimentally evaluates the dynamic response of a single vehicle suspension incorporating a magneto-rheological (MR) damper. A full-scale two-degree-of-freedom (2DOF) quarter-car test apparatus has been constructed at the Advanced Vehicle Dynamics Lab at Virginia Tech to evaluate the response of a vehicle suspension under the different control schemes of skyhook, groundhook, and hybrid semiactive control. The quarter-car apparatus was constructed using materials from 80/20 Incorporated and a hydraulic actuation system from MTS. A dSPACE AutoBox was used both for controlling the MR dampers and acquiring data. The first task was to understand the baseline dynamic response of the quarter-car system with only a passive damper. Next, the passive damper was replaced with a controllable MR damper. The control schemes of skyhook, groundhook, and hybrid semiactive control were applied to the MR damper. The physical response of the quarter-car with the different control schemes was then compared to the analytical prediction for the response, with favorable results. The response of the quarter-car with the semiactive damper was also compared to the response of the quarter-car with a passive damper, and the resulting limitations of passive damping are discussed. Finally, the practical implications of this study are shown in a discussion of the physical implementation of the MR dampers in the Virginia Tech FutureCar, a full-size Chevrolet Lumina. Although the actual skyhook, groundhook, and hybrid semiactive control schemes were not implemented on the vehicle, the results were promising and generated several recommendations for future research. / Master of Science
66

Damper Winding Fault Detection in Synchronous Machines

Holmgren, Fredrik January 2016 (has links)
This thesis aims to identify methods for detection of damper winding faults in synchronous machines (SMs) powered by variable frequency drives (VFDs). The problem of failing damper windings has received attention after reports of serious damage which have been discovered during maintenance checks. Since SMs often are used for critical applications, failures can be devastating if they cause total breakdowns. Also, VFDs are believed to cause additional stress in the damper windings of SMs and since the utilisation of VFDs is increasing, the problem is expected to become more common in the future. Currently, there is no method for detection of failures during normal operation of SMs, thus research in the area is required. Simulations based on the finite element method as well as laboratory experiments have been performed in order to examine the impact of VFDs and to find a way of detecting damper winding failures. The results confirm that utilization of VFDs produce higher currents in the damper winding compared to direct-online operation. The results also show that in case of a damper bar failure, the current distribution among the damper winding segments is affected. However, monitoring of all damper winding segments is unrealistic due to the number of sensors required. Another approach, which has been investigated, involves monitoring of the current through the pole interconnectors of one of the endrings. Potential fault indicators have been found by analysing the currents in the frequency domain. However, further studies are required in order to evaluate the method. Also the temperature of the damper winding was investigated as an indicator.
67

Investigation Of Stockbridge Dampers For Vibration Control Of Overhead Transmission Lines

Kasap, Huseyin 01 September 2012 (has links) (PDF)
This thesis aims to examine the performance of Stockbridge dampers used to suppress aeolian vibrations on overhead transmission lines arising from the wind. In this respect, a computer program, based on the Energy Balance Method, is developed using MATLAB. The developed computer program has also a graphical user interface (GUI), which allows the program to interactively simulate Stockbridge damper performance for vibration control of overhead transmission lines. Field tests results obtained from literature are used in various case studies in order to validate and evaluate the developed software. Moreover, sample Stockbridge damper characterization tests, which then could be introduced to the software, are performed. A custom test fixture is designed due to its unavailability of commercial alternatives in the market. In the design of the test fixture, modal and transmissibility analyses are done by using ANSYS Workbench. To further validate the test setup, transmissibility test is done and consistent results with the transmissibility analyses are observed in the range of expected aeolian vibration frequencies. Finally, the stepped-sine and swept-sine tests are performed with and without damper for the characterization test, where the latter one is performed to eliminate the negative effects of the test setup. Both tests yield almost same damper power dissipation curves.
68

Wave energy capture system ¡V surge motion tank

Huang, Kuang-Li 17 February 2011 (has links)
Liquid sloshing in a 2D tank applied on a wave energy capture system and reducing the oscillation of an offshore platform are discussed in this study. A fully nonlinear time-independent finite difference method and the forth-order Runge-Kutta method are implemented to solve the coupled motions of liquid sloshing in a 2D tank with a floating platform. When the external forcing frequency of the Dynamic Vibration Absorber System composed by a tuned liquid damper and a tuned mass damper is identical to the fundamental frequency of the tank, the external force can be effectively diminished by the sloshing-induced force. In the meantime, the maximum effect of tuned mass damper on reducing the amplitude of the floating platform appears. When the frequency of external forcing is close to the first natural frequency of the liquid tank, the coupled effect between the motions of both the tank and the platform can effectively reduce the vibration of the platform and the total energy of the whole system. The Eigenfrequency of a wave capture system is formed by the coupled effect of a liquid tank and a wave capture system. When the excitation frequency of the wave capture system is near its Eigenfrequency, the sloshing-induced force is much larger than that of external and the maximum displacement of the wave energy capture system occurs. As a result, the wave energy capacity of the wave capture system can be averagely increased to 150% by the influence of liquid sloshing in the tank.
69

The application of Micro Perforation theory onto Volvo Cars's Air Induction Systems : Implementation and Manufacturing of Micro Perforated Silencers at Volvo Cars in Gothenburg

Lindwall, Victor January 2017 (has links)
Downsizing in cars lead to higher noise emissions through the addition of turbo-/superchargers. These noise emissions must be counteracted and cancelled in order to contribute to the overall quality feel of a car. This project follows a product development method in order to research if a new type of silencers are applicable in air induction systems in order to dampen noise emissions. The project also cover how to manufacture the new type of silencers, traditionally used as acoustic insulation in offices. The project covered everything from literature review on silencers, noise regulations, downsizing and traditional plastic manufacturing methods. After the analysis of the results, it stood clear that the new silencers are more effective than conventional solutions. A manufacturing process was also determined, which needs further research in order to derive what the manufacturing cost would be. The project resulted in strong indicators that the new silencers are promising but also opened up to new research questions.
70

Pryžový tlumič torzních kmitů čtyřválcového vznětového motoru / Rubber damper of a four-cylinder diesel engine

Bauza, Erik January 2010 (has links)
A content of this diploma thesis is construction design of torsional vibration rubber damper of four-stroke diesel supercharged engine. It` s realized evaluation of crankshaft from aspect of torsional vibrations and checked mechanical stress of crankshaft without using rubber damper. Consequently basic parameters of rubber damper are specified, then checked mechanical stress of crankshaft and designed own construction design of damper.

Page generated in 0.0534 seconds