• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 91
  • 54
  • 26
  • 23
  • 10
  • 6
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 270
  • 72
  • 58
  • 56
  • 51
  • 49
  • 48
  • 33
  • 30
  • 29
  • 28
  • 27
  • 27
  • 27
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

INVESTIGATION OF PASSIVE CONTROL OF IRREGULAR BUILDING STRUCTURES USING BIDIRECTIONAL TUNED MASS DAMPER

Gutierrez Soto, Mariantonieta 19 December 2012 (has links)
No description available.
22

Innovations in the Usage of the Damper Pedal

Richards, Ruby Juliet 06 1900 (has links)
The piano first came into existence about 1709, but until the 1770's it was probably used most successfully as an accompanying instrument because of the small volume of tone it could produce. In its earlier stages the piano was not capable of producing even as big a tone as a large. sized harpsichord, During these seventy years piano builders experimented a great deal with the piano and its mechanisms, As with any instrument, some ideas were kept and improved, and others were tried and then discarded.
23

Structural Impact Mitigation of Bridge Using Tuned Mass Damper

Hoang, Tu A 04 May 2015 (has links)
This paper investigates the application of tuned mass damper (TMD) systems to bridge pier systems for structural impact damage mitigation and thus reduce the risk of collapses. A bridge superstructure and substructures are designed in accordance with The American Association of State Highway and Transportation Officials (AASHTO) specifications. A variety of vessel collision forces are obtained from collision testing of a scaled reinforced concrete pier. The optimal parameters of TMD systems are then determined such that the drift and displacement of the bridge superstructure are minimized for various impact scenarios. The structural impact mitigation performance of the pier equipped with the proposed optimal TMD system is compared with five different TMD systems employing the benchmark TMD optimal parameters. The uncontrolled responses are used as a baseline. It was demonstrated from the extensive simulations that the control effectiveness of the proposed TMD system was 25% better than all of the existing TMD models in reducing structure responses.
24

Broken Bar Detection in Synchronous Machines Based Wind Energy Conversion System

Rahimian, Mina Mashhadi 2011 August 1900 (has links)
Electrical machines are subject to different types of failures. Early detection of the incipient faults and fast maintenance may prevent costly consequences. Fault diagnosis of wind turbine is especially important because they are situated at extremely high towers and therefore inaccessible. For offshore plants, bad weather can prevent any repair actions for several weeks. In some of the new wind turbines synchronous generators are used and directly connected to the grid without the need of power converters. Despite intensive research efforts directed at rotor fault diagnosis in induction machines, the research work pertinent to damper winding failure of synchronous machines is very limited. This dissertation is concerned with the in-depth study of damper winding failure and its traceable symptoms in different machine signals and parameters. First, a model of a synchronous machine with damper winding based on the winding function approach is presented. Next, simulation and experimental results are presented and discussed. A specially designed inside-out synchronous machine with a damper winding is employed for the experimental setup. Finally, a novel analytical method is developed to predict the behavior of the left sideband amplitude for different numbers and locations of the broken bars. This analysis is based on the magnetic field theory and the unbalanced multiphase circuits. It is found that due to the asymmetrical structure of damper winding, the left sideband component in the stator current spectrum of the synchronous machine during steady state asynchronous operation is not similar to that of the induction machine with broken bars. As a result, the motor current signature analysis (MCSA) for detection rotor failures in the induction machine is usable to detect broken damper bars in synchronous machines. However, a novel intelligent-systems based approach is developed that can identify the severity of the damper winding failure. This approach potentially can be used in a non-invasive condition monitoring system to monitor the deterioration of a synchronous motor damper winding as the number of broken bars increase over time. Some other informative features such as speed spectrum, transient time, torque-speed curve and rotor slip are also found for damper winding diagnosis.
25

Numerical Simulation of Squeeze Film Dampers and Study of the Effect of Central Groove on the Dynamic Pressure Distribution

Boppa, Praneetha 2011 August 1900 (has links)
Squeeze film dampers are used in the high speed turbo machinery industry and aerospace industries as a means to reduce vibration amplitude, to provide damping, to improve dynamic stability of the rotor bearing system and to isolate structural components. The effects of cavitation included in previous studies were not effective. The effect of different design parameters were not studied thoroughly as experimental investigation of squeeze film dampers is very expensive. Few of them used numerical investigation but the methods they used are either time consuming or complicated. The present study investigated the feasibility of applying a steady state solver, which is computationally less expensive, for analyzing flow field inside the squeeze film dampers. The behavior of dynamic pressure profiles at different operating conditions, and the effect of a central groove on dynamic pressure profiles were also studied. Simulation results of a 3D case which is similar to the one experimentally studied by Delgado were used to establish if the moving reference frame (MRF) model in Fluent 12.1 can be used. A steady state solver in an absolute frame of reference was used to produce whirling motion of the rotor in this study. The inlet pressure of 31kpa and the whirling speed of 50 and 100Hz were used as boundary conditions. The mixture model with three percent dissolved air in lubricant is used to model multiphase flow. Singhal cavitation model is used to model cavitation. The simulations (50,000 iterations) were run until steady state solutions were reached. The results closely agreed with those obtained experimentally by San Andrés and Delgado. Numerical simulations of three-dimensional cases with an additional central groove on the squeeze film land were also performed to predict the effect of central groove on dynamic pressure profiles. Addition central groove reduces the pressures and forces generated by squeeze film damper.
26

STUDIES ON SHOCK VIBRATION CONTROL BY MOMENTUM EXCHANGE IMPACT DAMPER / 運動量交換型衝撃吸収ダンパの研究 / ウンドウリョウ コウカンガタ ショウゲキ キュウシュウ ダンパ ノ ケンキュウ

Son, Lovely 25 September 2007 (has links)
学位授与大学:京都大学 ; 取得学位: 博士(工学) ; 学位授与年月日: 2007-09-25 ; 学位の種類: 新制・課程博士 ; 学位記番号: 工博第2859号 ; 請求記号: 新制/工/1420 ; 整理番号: 25544 / Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第13388号 / 工博第2859号 / 新制||工||1420(附属図書館) / 25544 / UT51-2007-Q789 / 京都大学大学院工学研究科精密工学専攻 / (主査)教授 松久 寛, 教授 吉村 允孝, 教授 松原 厚 / 学位規則第4条第1項該当
27

Semi-active damping of heavy vehicles

Kitching, Kevin John January 1997 (has links)
This thesis is concerned with the use of semi-active suspensions in heavy vehicles to improve ride and reduce road damage. An introduction into the subject is given in chapter 1 and a review of the relevant literature is presented at the beginning of each main chapter. The development and modelling of a prototype, continuously variable semi-active damper for heavy vehicles is described in chapter 2. A proportional valve is used to generate the variable damping coefficient and the detrimental effects of the oil flow forces acting on the valve spool are studied. The force tracking performance of the damper is then examined for simple input conditions and the compliance of the hydraulic fluid is found to have a strong influence upon the response of the damper. The different vehicle and road models used in the thesis are described in chapter 3. In chapter 4, the performance of the prototype damper is investigated under realistic operating condition using a Hardware-in-the-Loop (HiL) test rig, with a single wheel station vehicle model. The prototype damper displays a phase lag of approximately 20ms between the demanded and achieved damping force. The semi-active suspension is found to be most effective in reducing the body accelerations relative to an optimum non-linear passive suspension. A theoretical investigation into the reduction of road damage through the use of active and semi-active suspensions is described in chapter 5. The relative performance of four linear state feedback control strategies is examined. The potential for reducing road damage by using a controller which directly regulates various measures of road damage is also studied. Significant improvements are predicted for the three controllers which assume the road inputs to the vehicle are correlated. However, these benefits are shown to diminish as the vehicle speed is reduced. It is concluded that the control of the dynamic tyre forces is an effective means by which to regulate road damage. Theoretical predictions of the benefits from wheelbase preview control are measured experimentally in chapter 6, using the prototype semi-active damper in a half-car HiL rig with a planar two axled heavy vehicle model. The benefits of preview control using the prototype semi-active damper are found to be less than theoretically possible due to the phase lag between the demanded and achieved damping force of the prototype damper. The final section of chapter 6 shows that the performance of the prototype damper can be improved further by having a theoretical simulation running ahead of the HiL vehicle. The theoretical simulation is used to predict the demanded damper force for the HiL vehicle and thereby compensate for the phase lag in the prototype damper. Conclusions and recommendations for further work are presented in chapter 7.
28

Měření síly na tlumiči za jízdy / On-Road Damper Force Measurement

Hornák, Filip January 2021 (has links)
The first part of the master's thesis deals with basic types and functions of dampers, together with a search of commonly used methods of damper force measurements. Consequently, a design of an on-road damper force measuring assembly is made and positioned onto a 3D model of a vehicle's damper. In the final part of the thesis there is made an evaluation of conditions of use of the measuring assembly together with its versatility.
29

Modeling a Semi-Submersible Floating Offshore Wind Turbine With Tuned Inerter Dampers Within the Platform

Okuda, Ryan Rikio 17 July 2023 (has links)
With growing awareness of climate change and an increased interest in renewable energy, resources like offshore wind are projected to grow in the near future. One key issue within offshore wind is how to stabilize the floating system when it experiences large wind and wave forces that impact its performance and shorten its operating life. Researchers have been exploring structural control methods and creating modeling tools to evaluate the performance of the control methods. One such tool is OpenFAST, the industry standard for modeling wind turbine dynamics, and the goal of this paper is to build upon the existing capabilities of OpenFAST. Inerter-based structural control methods offer arguably better performance than traditional vibration absorbers, and the configuration proposed in this paper also offers the ability to use a generator as an element in the structural controller. This allows extra energy to be generated along with the improvement in vibration absorption. Through this study, this inerter-based control method is explored through the lens of an established modeling tool to provide the validation for the model to explore which load cases the inerter performs best in and what design considerations must be made. In addition, the energy harvesting potential of the inerter system is evaluated and shown to increase the system's capabilities especially under stormy ocean conditions. / Master of Science / With growing awareness of climate change and an increased interest in renewable energy, resources like offshore wind are projected to grow in the near future. One key issue within offshore wind is how to stabilize the floating system when it experiences large wind and wave forces which impact its performance and shorten its lifespan. Researchers have been exploring several methods and creating modeling tools to evaluate the performance of control methods. One such tool is OpenFAST, the industry standard for modeling wind turbine dynamics, and the goal of this paper is to build upon the existing capabilities of OpenFAST. Structural control methods based on an element called an inerter offer arguably better performance than traditional vibration absorbers. The design in this paper also offers the ability to use an electrical generator as an element in the structural controller. This allows extra energy to be generated along with the reduced vibrations. Through this study, this inerter-based control method is explored through the lens of an established modeling tool to provide validation for the model. Another goal is to explore which scenarios the inerter performs best and what design considerations must be made for future development. In addition, the energy harvesting potential of the inerter system is evaluated and shown to increase the system's capabilities.
30

Development of a Semi Active Suspension System for Lightweight Automobiles

Tyagi, Sheetanshu Rajeev 09 August 2016 (has links)
Vehicle suspension systems play an integral role in influencing the overall performance of a vehicle. The suspension system of a vehicle performs multiple tasks, such as maintaining contact between the tires and the road and isolating the frame of the vehicle from road-induced vibration and shocks. A significant amount of research has been directed to improving the performance of the suspension system by varying the damping coefficient so as to alter the frequency response of the system. This study describes the development of such a damper. The goal of this research has been to design, model, fabricate and test a novel semi-active damper. The damper consists of two independent electronically controlled units placed in series with one another. The system was initially simulated using a 2 DOF quarter-car model and the performance characteristics of the damper were outlined. Following that, multiple design iterations of the damper were created and a MATLAB/Simulink model was used to simulate physical and flow characteristics of the damper. After the design and analysis was complete, the damper was fabricated and tested using a shock dyno at CenTiRe. The test results were then compared to the simulation results so as to confirm performance of the damper. Additionally, the results obtained on the dyno were then compared against that of a relative single semi-active and passive damper. / Master of Science

Page generated in 0.0251 seconds