• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 361
  • 55
  • 48
  • 31
  • 8
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 570
  • 570
  • 201
  • 129
  • 111
  • 105
  • 91
  • 91
  • 88
  • 79
  • 71
  • 69
  • 63
  • 61
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Gamma-ray emission from Galactic millisecond pulsars: Implications for dark matter indirect detection

Song, Deheng 18 January 2022 (has links)
The Fermi Large Area Telescope has observed a gamma-ray excess toward the center of the Galaxy at ~ GeV energies. The spectrum and intensity of the excess are consistent with the annihilation of dark matter with a mass of ~100 GeV and a velocity-averaged cross section of ~ 1e-26 cubic centimeter per second. In the meantime, a population of unresolved millisecond pulsars (MSPs) in the Galactic center remains a possible source of the excess. Furthermore, recent analyses have shown that the excess prefers the spatial morphology of the stellar bulge distribution in the Galactic center, supporting a MSP origin. The new discovery makes it imperative to further study the signals from MSPs. This dissertation studies the gamma-ray emission from Galactic millisecond pulsars to provide new insights into the origin of the Galactic center excess. Using the GALPROP code, we simulate the propagation of e± injected by the putative MSPs in the Galactic bulge and calculate the inverse Compton (IC) emission caused by the e± losing energy in the interstellar radiation field. We find recognizable features in the spatial maps of the IC. Above TeV energies, the IC morphology tends to follow the distribution of the injected e±. Then, we study the Cherenkov Telescope Array (CTA) sensitivity to the IC signal from MSPs. We find that the CTA has the potential to robustly discover the IC signature when the MSP e± injection efficiencies are in the range ≈ 2.9-74.1%. The CTA can also discriminate between an MSP and a dark matter origin for the radiating e± based on their different spatial maps. Next, we analyze the Fermi data from directions of Galactic globular clusters. The globular clusters are thought to be shining in gamma rays because of the MSP population they host. By analyzing their gamma-ray spectra, we reveal evidence for an IC component in the high-energy tail of Fermi data. Based on the IC component in the globular cluster spectra, the e± injection efficiency of millisecond pulsars is estimated to be slightly smaller than 10%. Finally, we study the spatial morphology of the 511 keV signal toward the Galactic center using data from INTEGRAL/SPI. We confirm that the 511 keV signal also traces the old stellar population in the Galactic bulge, which is similar to the Fermi GeV excess. Using a 3D smoothing kernel, we find that the signal is smeared out over a characteristic length scale of 150 ± 50 pc. We show that positron propagation prior to annihilation can explain the overall phenomenology of the 511 keV signal. / Doctor of Philosophy / Dark matter means matter that does not interact with light; therefore, they are invisible to traditional observations. We know that dark matter exists based on plenty of gravitational evidence: the motions of stars in galaxies, the large-scale structure of the Universe, the temperature fluctuations in the cosmic microwave background. However, we still know very little about the particle nature of dark matter. Detecting dark matter is one of the most extensive missions of modern physics. In indirect detection, the dark matter particles are expected to annihilate or decay in the cosmos, producing messenger particles that include gamma rays, cosmic rays, and neutrinos. Astronomical observations could detect those signals and confirm the nature of dark matter. However, understanding the astrophysical sources is essential for indirect detection of dark matter as they may emit similar signals. For a recent example, the Fermi Large Area Telescope launched by NASA is the most sensitive gamma-ray telescope in the energy range of ~ 100 MeV to ~ 100 GeV. It has detected an excess of gamma-ray signals toward the Galactic center consistent with what we expect from dark matter annihilation. However, millisecond pulsars, a type of fast rotating neutron stars, may also generate similar gamma-ray signals. Therefore, the origin of the signal remains unsettled. In this dissertation, we study different prospective of the gamma-ray emission from the millisecond pulsars in the Milky Way. We first study the inverse Compton signal from the millisecond pulsars in the Galactic bulge, caused by the relativistic e± injected by the millisecond pulsars. We find that the signal traces the original distribution of the e± above TeV energies. Next generation ground-based gamma-ray observatories like the Cherenkov Telescope Array (CTA) could be used to detect the signal. We study the CTA sensitivity to such an inverse Compton signal. We find that CTA can detect the inverse Compton signal from millisecond pulsars and discriminate it from a dark matter signal. We also study the gamma-ray emission from globular clusters in the Milky Way. They are dense collections of old stars orbiting our Galaxy, and they are known for hosting many millisecond pulsars. We reveal evidence for inverse Compton emission from the gamma-ray data of globular clusters. Our discovery helps us better understand the high-energy property of millisecond pulsars. Last, we study the morphology of the Galactic 511 keV signal caused by positron annihilation. Compact objects including millisecond pulsars are potential sources of the positrons. We find that the old stellar distribution with a smearing scale of ~ 150 pc best describes the 511 keV signal. Positron propagation from their sources prior to annihilation could explain the measured smearing scale.
222

Core-collapse supernovae: neutrino-dark matter phenomenology and probes of internal physics

Heston, Sean MacDonald 08 May 2024 (has links)
The standard model of particle physics cannot currently explain the origin of neutrino masses and anomalies that have been observed at different experiments. One solution for this is to introduce a beyond the standard model origin for these issues, which introduces a coupling between neutrinos and dark matter. Such an interaction would have implications on cosmology and would be constrained by astrophysical neutrino sources. A promising astrophysical source to probe this interaction is core-collapse supernovae as they release ~3x10^53 erg in neutrinos for each transient. However, more observations that constrain the internal physics of core-collapse supernovae are needed in order to better understand their neutrino emission. This dissertation studies two probes of internal physics that allow for a better understanding of the neutrino emission from core-collapse supernovae. The first is a novel approach to try and detect more supernova neutrinos that do not come from galactic events nor from the diffuse supernova background. This is accomplished by doing an offline timing coincidence search at neutrino detectors with a search window determined by optical observations of core-collapse supernovae. With a two-tank Hyper-Kamiokande, this allows for ~1 neutrino detection every 10 years with a confidence level of ~2.6 sigma, resulting from low nearby core-collapse rates and large background rates in the energy range of interest. The second probe of internal physics is high energy gamma-rays from the decays of unstable nuclei in proto-magnetar jets. The abundance distribution of the unstable nuclei depends directly on the neutrino emission, which controls the electron fraction, as well as properties of the proto-magnetar. We find that different proto-magnetar properties produce gamma-ray signals that are distinguishable from each other, and multiple types of observations allow for estimations of the jet and proto-magnetar properties. These gamma-ray signals are detectable for on-axis jets out to extragalactic distances, ~35 Mpc in the best case, and for off-axis jets the signal is only detectable for galactic or local galaxies depending upon the viewing angle. This dissertation also studies a phenomenological constraint on the interactions between neutrinos and dark matter. Using the neutrino emission from supernovae and the inferred dark matter distributions in Milky Way dwarf spheroidals, we constrain the amount of energy the neutrinos can inject into the dark matter sub-halos. This then allows a constraint on the interaction cross-section between neutrinos and dark matter with assumptions about the interaction kinematics. Assuming Lambda-CDM to be correct, the neutrinos cannot interact with low mass dark matter too often as it will become gravitationally unbound, changing the mass of the core we see today. For high mass dark matter, neutrinos can only inject a fraction of ~6.8x10^-6 of their energy in order to not conflict with estimates of the current shapes of the dark matter sub-halos. The constraints we obtain are sigma_nu-DM(E_nu=15 MeV, m_DM>130 GeV) ~ 3.4x10^-23 cm^2 and sigma_nu-DM(E_nu=15 MeV, m_DM <130 GeV) ~ 3.2x10^-27} (m_DM/1 GeV)^2 cm^2, which is slightly stronger than previous bounds for these energies. Consideration of baryonic feedback or host galaxy effects on the dark matter profile can strengthen this constraint. / Doctor of Philosophy / In our current understanding of the physics of the particles that govern how the universe behaves, there is no way to explain the properties we observe for the neutrino. Neutrinos were originally theorized to have zero mass, however neutrino experiments suggests otherwise. The current model of particle physics cannot explain how the neutrinos have mass, therefore an viable way to explain it is to introduce new physics that can generate the neutrino masses. A way to do this is to allow the neutrinos to interact with dark matter, which is matter that does not interact with light and is therefore invisible to the human eye. We know dark matter should exist in the universe due to the gravitational effects it has, making things like galaxies much heavier than what the stars and gas we see can explain. If neutrinos and dark matter interact, we should be able to see the effects of these interactions in the universe, and also possibly at locations where many neutrinos are produced. One such source of neutrinos in the universe are core-collapse supernovae, which are the deaths of massive stars and produce copious amounts of neutrinos. This dissertation studies signals that allow us to better understand the neutrino emission from core-collapse supernovae. One of these signals comes from summing the neutrinos we detect from many distant core-collapse supernovae. This technique uses the optical observations of the supernovae to give us a time window around which we can go through neutrino detector data to find if there are any neutrino detections that cannot be explained as coming from background events. Another method is to observe gamma-rays, high energy photons, that come from the radioactive decay of elements in jets moving near the speed of light powered by rare core-collapse supernovae. The specific gamma-rays and the overall brightness of them allows for an estimation of the properties of the neutrino emission and properties of the central engine that accelerates the jet to near the speed of light. This dissertation also studies the implications of a possible interactions in small and dim satellite galaxies of the Milky Way known as dwarf spheroidals. The shape of the dark matter that is distributed in these dwarf spheroidals can be inferred from the motion of the stars in that dwarf spheroidal, and this shape disagrees with the prevailing theory of dark matter in the universe. We take advantage of this disagreement to place an upper limit on both the mass loss that can occur in this region and the energy that past core-collapse supernovae within the dwarf spheroidals can inject into the dark matter. The mass loss bound lets us place a constraint on how often neutrinos can interact with light dark matter particles. The energy injection limit and an assumption on the energy transfer in each interaction between dark matter and neutrinos allows us to constrain how often the interaction can occur for heavy dark matter particles.
223

Refining the chemical and kinetic decoupling description of thermally produced dark matter

Binder, Tobias 13 March 2019 (has links)
No description available.
224

Dark matter in the Next-to-Minimal Supersymmetric Standard Model

Mitropoulos, Pantelis 10 December 2013 (has links) (PDF)
This thesis deals with Dark Matter (DM) properties, mainly in the context of the Next-to-Minimal Supersymmetric Standard Model (NMSSM). First, it is examined whether a neutralino in the NMSSM could explain a monochromatic photon excess possibly present in the Fermi-LAT data. It is shown that neutralino pair annihilation with a CP-odd Higgs exchanged in s-channel can, in principle, give rise to a sufficiently large cross section. Asymmetric dark matter models, aiming at the explanation of the coincidence of present-day DM and baryon abundances, are also discussed. Upper bounds on DM self-annihilation cross section, which can potentially destroy the DM asymmetry, are derived and applied to a variety of models. Finally, a supersymmetric model is proposed, providing sneutrinos as viable asymmetric DM and explaining the smallness of neutrino masses. Bounds on this model from particle physics, cosmology and DM searches are studied.
225

Axion dark matter and two-neutrino double electron capture searches in the Large Underground Xenon experiment

Marzioni, Maria Francesca January 2018 (has links)
The hunt for Dark Matter plays a truly critical role in contemporary physics. At both the largest and smallest scales, deep questions are being raised about the fundamental nature of the universe - questions that confirmation and then characterisation of particle dark matter will provide many answers to. This thesis presents some of the world's most sensitive searches to date for certain types of axion dark matter, axion-like particles, and two-neutrino double electron capture. These have been conducted using the Large Underground Xenon (LUX) experiment. Evidence for dark matter and physics beyond the Standard Model of particle physics is described in Chapter 1, while Chapter 2 gives an overview of proposed candidates for particle dark matter. The various experimental approaches being used to detect particle dark matter are presented in Chapter 3. Direct detection with time projection chambers plays a major role in this thesis, with particular interest in the LUX detector, that is described in its components and operations. Chapter 4 presents LUX direct searches for weakly interacting massive particles. Although I have contributed to these analyses, they are included for completeness only, as they are not part of my central work. The LUX collaboration's searches for axion dark matter and axion-like particle have delivered world-leading results on the axion-electron coupling constant. These results, that I personally led and which have been published in Physics Review Letters, are presented in Chapter 5, along with sensitivity studies, also led by me, made for the future LUX-ZEPLIN experiment. Finally, a search for two-neutrino double electron capture of 124Xe, that I performed using LUX data to extract a limit on the half life of the process, is presented in Chapter 6. Although being allowed by the Standard Model, two-neutrino double electron capture shares the matrix element calculation framework with the neutrinoless channel of the same process, becoming of great interest in the scope of neutrino physics. Conclusions follow and close the thesis.
226

Dynamical Imprint of Dark Matter Halo and Interstellar Gas on Spiral Structure in Disk Galaxies

Ghosh, Soumavo January 2017 (has links) (PDF)
The topic of this thesis deals with the spiral structure in disk galaxies with a specific aim of probing the influence of the dark matter halo and the interstellar gas on the origin and longevity of the spiral arms in late-type galaxies through theoretical modeling and numerical calculations. The basic theoretical model of the galactic disk used involves gravitationally-coupled two-component system (stars and gas) embedded in a rigid and non-responsive dark matter halo, i.e., the static potential of the dark matter is used in the calculations. However, at places, depending on the nature of the problem addressed, the disk is treated as consisting of only stellar component or only gas component followed by proper justifications for the assumptions. The disk is rotationally-supported in the plane and pressure-supported perpendicular to the plane of the disk. The first part of the thesis involves searching for the dynamical effect of dark matter halo on small-scale spiral structure in dwarf low surface brightness (LSB) galaxies and also some dwarf ir-regular galaxies which host an extended H I disk. In both cases, the rotation curves are found to be dominated by the contribution of the dark matter halo over a large radial distance, starting from the inner regions of the galaxies. The next part of the thesis deals with the investigation of the possible effect of the interstellar gas on the persistence is-sue and the pattern speeds of the spiral structure in the disk galaxies. The last part of the thesis involves in studying the dynamical effect of dark matter halo on large-scale spiral structure. Following is the layout of the thesis. Chapter 1 gives a general introduction to the topic of spiral structure of late-type disk galaxies, followed by a broad overview of the theoretical development of the topic and the present status of the topic. Then the thesis starts with studying the small-scale spiral features and evolves to studying the large-scale spiral features seen in disk galaxies in the following way: Chapters 2 & 3 deal with the effect of dark matter halo on small- scale spiral structure. Chapters 4 & 5 focus on the dynamical effect of the interstellar gas on the spiral structure using the local dispersion relation. Chapters 6 & 7 discuss the possible effect of dark matter halo on large-scale spiral structure in disk galaxies. Chapter 8 contains the summary of results and future plans. Effect of dark matter halo on small-scale spiral structure The spiral arms in the disks of galaxies are often broken into several smaller parts or patches that create a messy visual impression when viewed from a ‘face-on’ configura-tion. They are generally termed as ‘small-scale’ or flocculent spiral arms. Several stud-ies showed that the small-scale spiral arms are basically material arm, i.e., they can be thought of as ‘tubes’ filled with stars and gas. Spiral arms are known to participate in the secular evolution of the disk galaxies. Since disk galaxies are believed to reside within a halo of dark matter, therefore a detailed understanding of possible effects of dark matter halo on the spiral arms is necessary. In Chapter 2, we investigate the effect of dark matter halo on small-scale spiral fea-tures in the disks of LSB galaxies. Modeling the mass distribution within a galaxy from the rotation curve of a typical small LSB galaxy reveals the generic fact that for most of the radii, dark matter halo dominates over the stellar disk. This trend is found to be true from the very inner regions of an LSB disk which in turn makes the LSBs a suitable laboratory for probing the effect of dark matter halo on the dynamics of disk galaxies. Following a semi-analytic approach, and using the observationally measured input pa-rameters for a typical superthin LSB galaxy, UGC 7321, we showed that the dominant dark matter halo suppresses the small-scale spiral structure in the disk of UGC 7321. Since UGC 7321 possesses features typical of a LSB galaxy, we argued that this finding will also hold true for other typical LSBs. The result is at par with the observational evi-dences for the lack of prominent, strong small-scale spiral structure in LSB galaxies. In Chapter 3, we employed the similar techniques for probing the effect of dark matter halo on small-scale spiral structure, except this time we took five dwarf irregular galaxies with an extended H I disk as the sample for our investigation. The main im-portant difference between these dwarf irregular galaxies with the earlier LSB galaxies is that for these dwarf irregular galaxies with extended H I disk, the largest baryonic con-tribution comes from the interstellar gas (mainly H I ), and not from the stars (as seen in LSBs). The extended H I disks of these galaxies allow one measure the rotation curve, and hence modeling the dark matter halo parameters for a large radial range from the galactic center. Here also the rotation curves are found to be dominated by dark matter halo over most of the disk, thus providing yet another ‘laboratory’ for testing the dynam-ical effect of dark matter halo on the dynamics of the disks. Using the observed input parameters for five such dwarf irregular galaxies, we showed that the dense and com-pact dark matter halo is responsible for preventing strong small-scale spiral structure in these galaxies, which is in fair agreement with the observations. Dynamical effect of interstellar gas on longevity of spiral arms Any late-type disk galaxy contains a finite amount of interstellar gas along with the stel-lar component. The atomic hydrogen (H I ) constitutes the bulk of the interstellar gas along with the molecular hydrogen (H2), ionized hydrogen (H I I ), and a trace amount of heavy elements like helium. The mass fraction present in the interstellar gas in disk galaxies is found to vary with the Hubble sequence, with the amount of interstellar gas increasing from Sa type to Scd type of galaxies. Due to the lower value of velocity disper-sion as compared to that of stars, gas is known to have a larger destabilizing effect in the disk. Therefore, the natural question arises about what possible role the interstellar gas could play in the origin and the persistence issue of spiral arms. In Chapter 4, we explored how the interstellar gas could influence the longevity of the spiral arms in late-type disk galaxies by treating the spiral structure as density waves in the disk. The disk is modeled as a gravitationally coupled stars plus gas (two-component) system, where the stars are modeled as a collisionless system and the gas treated as a fluid system. Using the appropriate local dispersion relation for the above mentioned model for the disk of galaxy, we calculated the group velocity of a wavepacket of density wave and then studied the variation of the group velocity with increasing amount of interstellar gas in the system. We showed that the group velocity of a wavepacket in a Milky Way-like disk galaxy decreases steadily with the inclusion of gas, implying that the spiral pattern will survive for a longer time-scale in a more gas-rich galaxy by a factor of few. In Chapter 5, we investigated the role of interstellar gas in obtaining a stable den-sity wave corresponding to the observed pattern speed for the spiral arms. The under-lying local dispersion relation remains same as that is in Chapter 4. Using the observa-tionally measured pattern speed and the rotation curves for three late-type disk galaxies we showed that the presence of interstellar gas in necessary in order to maintain a stable density wave corresponding to the observed values for pattern speeds. Also we proposed a method to determine a range of pattern speed values at any particular radius, corre- sponding to which the density wave can be stable. We applied this method to the same three late-type galaxies which we used in the earlier part of this chapter. We found that, for these three galaxies, the observed pattern speed values indeed fall in the predicted range. Imprint of dark matter halo on large-scale spiral structure Along with the small-scale spiral arms, there also exists another type of spiral arms – the large-scale spiral structure, like what we see M 51 or in NGC 2997, which occupy almost the entire outer optical disk in the galaxy. These spiral arms are termed as ‘grand-design’ spiral structure. One of the competing theories, namely, Density wave theory proposes that the large-scale structure is basically a density wave in the disk and the pattern ex-hibits a rigid-body rotation with a definite constant pattern speed. In the earlier part this thesis (Chapters 2 & 3), it was shown that the small-scale spiral structure gets damped by the dominant dark matter halo. Therefore, a natural question arises whether dominant dark matter plays any role on these large-scale spiral structure; and if yes, to what extent it affects the large-scale spiral structure. In Chapters 6 & 7, we investigated how the large-scale structure in disk galaxies gets affected when the disk galaxy hosts a dark matter halo that dominates over most of the disk regions. We again chose the LSB galaxies as laboratory for this study. In Chapter 6, we modeled the stellar component as a fluid system and in Chapter 7, we treated the stellar system as more realistic collisionless system. In both cases, global spiral modes are identified from the appropriate dispersion relations via a novel quantization rule, and they are used as a ‘proxy’ for the large-scale spiral structure. Using the input pa-rameters for UGC 7321, in Chapter 6 we showed that the fluid representation of stellar system failed to make an impression in suppression of the global spiral modes. However, when stellar component is treated as a more realistic collisionless system, we found that the dark matter halo suppresses the large-scale spiral features as well in the disks of LSB galaxies, in fair agreement with the observations. Finally, in Chapter 8, the thesis concludes with a summary of main results and a brief discussion of the scope for future work.
227

Resonant Interactions of Dark Matter Particles Using Effective Field Theory

Johnson, Evan Wesley 06 November 2019 (has links)
No description available.
228

Effects of Dark Matter in Astrophysical Systems

Clementz, Stefan January 2017 (has links)
When studying astrophysical structures with sizes ranging from dwarf galaxies to galaxy clusters, it becomes clear that there are vast amounts of unobservable gravitating mass. A compelling hypothesis is that this missing mass, which we call dark matter, consists of elementary particles that can be described in the same manner as those of the standard model of particle physics. This thesis is dedicated to the study of particle dark matter in astrophysical systems. The solar composition problem refers to the current mismatch between theoretical predictions and observations of the solar convection zone depth and sound speed profile. It has been shown that heat transfer by dark matter in the Sun may cool the solar core and alleviate the problem. We discuss solar capture of a self-interacting Dirac fermion dark matter candidate and show that, even though particles and antiparticles annihilate, the abundance of such a particle may be large enough to influence solar physics. Currently, direct and indirect methods are employed in searches for dark matter. In this context, we study inelastic dark matter, where a small mass splitting separates two dark matter particles and scattering takes one into the other. This affects the scattering kinematics, which in turn affects direct detection and solar capture rates. We also discuss the information contained in a direct detection signal and how it can be used to infer a minimal solar capture rate of dark matter. When comparing simulated dark matter halos with collisionless dark matter with dark matter halos inferred from observations, problems appear in the smallest structures. A proposed solution is self-interacting dark matter with long range forces. As the simplest models are under severe constraints, we study self-interactions in a model of inelastic dark matter. / <p>QC 20170309</p>
229

From galaxy clustering to dark matter clustering

Yoo, Jaiyul 23 August 2007 (has links)
No description available.
230

Probing the Beyond Standard Model Physics in Top Quark and Dark Matter Sectors

Mendiratta, Gaurav January 2017 (has links) (PDF)
The Standard Model (SM) of particle physics provides the theoretical framework to describe the fundamental interactions among elementary constituents of matter. SM is supported by experiments to a high degree of accuracy, up to parts per-mil for the electroweak (EW) sector and parts-per-trillion for QED alone, but it still remains incomplete. Many observed phenomena lack explanation in the framework of the SM and its particles. They indicate the possibility of existence of particles and interactions beyond the SM (BSM). These phenomena include dark matter (DM), dark energy and baryonic asymmetry of the universe. In addition, a quantum description of gravity is still lacking. The top quark has the largest mass among the SM particles. Due to it’s heavy mass, top quark is the only colored particle which does not hadronize and hence its properties are directly accessible by studying it’s decay particles. The order one Yukawa coupling of the top quark also imbibes it with an important role in the behavior of the SM couplings at higher energy scales where possible BSM physics may contribute. As a result, precision measurements of top quark properties may provide a glimpse into BSM physics and hence making these measurements is one of the core aims of the Large Hadron Collider. In stark contrast with top quark physics is the elusive, dark matter (DM) of the universe. There exists a lot of observational evidence for it but, as of yet, with no clue with regards to its particle properties and interactions. Compelling evidence for the existence of DM comes from measurements based on cosmic microwave background radiation, astrophysical observations of distribution of visible matter in galaxy clusters, galactic cluster collisions (e.g. bullet cluster), gravitational lensing, galactic rotation curves, structure formation simulations, to name a few. It is interesting to investigate the possibility that there may be a connection between top quark and DM. In this thesis, we extend the SM with simplified models to study BSM physics at colliders and also to explain the DM puzzle. Here, we use the Top quark as a laboratory for constructing generic probes of BSM and also of the dark sector physics. In Chapter 1, we introduce some relevant background and salient aspects of the SM framework on which the following BSM theories are built. In Chapter 2 we explore an s channel and a t-channel simplified model in the context of top quark pair production using asymmetries constructed with kinematic variables of the top decay products. In Chapter 3, we then propose a simplified model which includes a colored scalar as the mediator between DM and SM particles, termed gluphillic scalar dark matter (GSDM). Monojet process is one of the primary channels to probe DM at hadron colliders. In Chapter 3, the discussion of monojet process at the Large Hadron Collider (LHC) is limited to the effective field theory (EFT) framework. In Chapter 4 we discuss collider processes in GSDM model with complete loop calculations for the diagrams involving the mediating colored scalar. We also compare the loop calculation with the EFT results to find the range of applicability of the EFT. The top quark study in Chapter 2 was initially inspired from an interesting observation made in 2008 which suggested a deviation from the SM in the forward-backward asymmetry (FBA) of a pair produced top quark. The value of FBA measured at the time was 18% ±12%. This value deviated by more than 1σ with respect to the SM leading order (LO) value of 5%. The deviation was observed by both the detectors at Tevatron, D0 and CDF, and it’s significance increased with additional data in 2012. Recent analyses of the data by D0 is now in better agreement with the latest effective-NNNLO calculations. However, the FBA measurements by CDF are still in tension with those by D0 and the value predicted by theoretical calculations. Inspired by this puzzle, which may be on its way to getting solved, we have been able to construct effective probes of BSM physics for the on-going and future searches of BSM in the top quark sector. In our analyses, we studied correlations among observables which can distinguish between different sources of BSM contributions in the top quark pair production. As a template, we use an s-channel and a t-channel mediator, both of which leave very different signatures in the kinematic asymmetry correlations. The simplified models considered by us also included parity breaking interactions which lead to polarized top quarks, providing another probe into the underlying production process. We find that all the kinematic distributions of the decay lepton get influenced by the polarization of the top quark. We show that these correlations can distinguish well between the template models of axigluon and diquark. In general, all of these observables also provide a probe into the polarization of the top quark and therefore any chiral couplings with the mediator. However, the lepton polar angle asymmetry measured in the lab frame is special in that it can not only probe the longitudinal polarization as other observables but is also sensitive to the transverse polarization of the top quark. We also show the effectiveness of the proposed top quark kinematic observables, to distinguish between s and t-channel BSM physics models, in future searches for BSM particles at the run-II LHC. In a large verity of dark matter (DM) models the simplest candidate is the model of a singlet scalar particle. The scalar may couple to the standard model in a number of ways via any of the SM particles. Such models with BSM Yukawa interactions or gauge sector extensions are strongly constrained from both the direct detection and collider precision measurements. The remaining models either predict a very heavy dark matter, completely out of reach of collider searches or introduce an unnaturally weak coupling with the SM particles giving no justifications for the small numbers. An interesting corner of the space of possible DM models which has been under-explored so far includes interactions of DM particles with gluons. Although DM particles cannot themselves be charged or colored, a colored scalar mediator can allow this interaction. One such model arises when we consider the scalar DM in presence of a colored scalar particle, for example the one from t-channel model above. Such colored scalars are generically present in a number of BSM theories including SUSY and GUT. How-ever, without the need for any additional gauge symmetries, the two scalars would interact with each other via the marginal operators. In Chapter 3 we study a SM singlet scalar DM candidate which couples to SM via a colored scalar particle. In the GSDM model, DM and mediator interact via the quartic, marginal operator. DM annihilation cross-section of the order of weak interactions (∼ 0.1pb) is predicted to explain the observed dark matter relic density if arising from thermal production of a WIMP DM candidate of mass ∼ 100 GeV. On investigating the GSDM model, we find that it allows a large annihilation cross-section and is still compatible with direct detection bounds. This is so because the annihilation cross-section to a pair of colored scalars proceeds via a tree-level interaction, whereas the interaction with SM particles proceeds via loop diagrams involving the colored scalars. Our work shows that this model is compatible with the observed relic density of DM when the mediating particle is lighter than DM for a large range of the couplings. For masses of the DM and the mediator less then ∼ 50 GeV, the DM can also be lighter than the mediator where the annihilation then proceeds via loop interactions. This region of parameter space is strongly constrained from the collider physics bounds on a colored scalar particle. These bounds become much weaker in the case where the colored scalar does not couple to quarks and hence cannot decay. The bounds coming from long-lived colored scalars become relevant in those cases and also constrain the light mass window. A colored scalar interacting with quarks must do so without violating the strong flavor constraints. We consider the scalar in the framework of a class of models termed minimally flavor violating (MFV) and also assume that it couples only to the right handed up-sector quarks. Such a particle would couple to the top quark and would be observable at the LHC pair production of the top quark. We find constraints on a color triplet particle in such a case and show the coupling and mass regions allowed. Constraints from the decays to light quarks are interpreted from dijet process searches and limit the mass of a color-triplet scalar above 350 GeV. The primary process for direct search of stable particles produced at a collider is a single jet in association with missing transverse energy (MET). We find that in an effective field theory (EFT) framework, very weak bounds are obtained on the mediating scale. In Chapter 4, we perform complete loop calculations for processes involving colored scalar particles and DM at LHC in order to explore the GSDM model at LHC and FCC (Future Circular Collider). The EFT is valid only for mediator masses much heavier than the momentum transfer or the MET cuts. We show the region of applicability of the EFT by comparing it with respect to the loop induced calculation. We analyze the monojet + missing transverse energy (MET) process to find the expected bounds from LHC 13 TeV run-II. We calculate the reach of the LHC in the high luminosity run in the future and also the reach of the FCC to explore the GSDM model. We perform all our calculations for a number of representations of the colored mediator from a triplet to dimension 15. As expected, collider constraints are only significant when the dark matter is light enough (mDM ∼ 10 GeV) to be copiously produced at the LHC. We find that in the high luminosity run, LHC can probe the scalar triplet particle up-to 50 GeV mass in the monojet process though a dimension 15 particle can be probed up to 150 GeV. With an order of magnitude higher beam energy, FCC can rule out much larger parameter space or provide observational evidence for TeV scale mediating particles. In conclusion, this thesis adds to the growing body of literature which points towards BSM discoveries around the corner at high luminosity LHC in the top physics and in dark sector physics. We have also proposed avenues for precision BSM studies at the next generation colliders.

Page generated in 0.0751 seconds