• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 361
  • 55
  • 48
  • 31
  • 8
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 570
  • 570
  • 201
  • 129
  • 111
  • 105
  • 91
  • 91
  • 88
  • 79
  • 71
  • 69
  • 63
  • 61
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

The Cryogenic Infrastructure of the XENON1T Dark Matter Experiment: from Design to Performance during the One Ton-Year WIMP Search

Zhang, Yun January 2021 (has links)
An abundance of evidence from a wide range of astrophysical and cosmological observations suggests the existence of nonluminous cold dark matter, which makes up about 83% of the matter and 27% of the mass-energy of the Universe. Weakly Interacting Massive Particles (WIMPs) have been one of the most promising dark matter candidates. Various detection techniques have been used to directly search for the interaction in terrestrial detectors where WIMP particles are expected to scatter off target nuclei. Over the last fifteen years, dual-phase time projection chambers (TPCs) with liquid xenon (LXe) as target and detection medium have led the WIMP dark matter search. The XENON dark matter search project is a phased program focused on the direct detection of WIMPs through a series of experiments employing dual-phase xenon TPCs with increasing target mass operated at the Gran Sasso underground laboratory (LNGS) in Italy. The XENON1T experiment is the most recent generation, completed at the end of 2018. The XENON1T dark matter search results from the one ton-year exposure have set the most stringent limit on the WIMP-nucleon spin-independent elastic scatter cross-section over a wide range of masses, with a minimum upper limit of 4.1 x 10⁻⁴⁷ cm² at 30 GeV · c⁻² and a 90% confidence level. XENON1T is the first WIMP dark matter experiment which has deployed a dual-phase xenon TPC at the multi-ton scale, with 3.2 t of LXe used. The large xenon mass posed new challenges in reliable and stable xenon cooling, in achieving and maintaining ultra-high purity as well as in efficient and safe xenon storage, transfer and recovery. The Cryogenic Infrastructure was designed and constructed to solve these challenges. It consists of four highly interconnected systems --- the Cryogenic System, the Purification System, the Cryostat and Cryogenic Pipe, and the ReStoX System. The XENON1T Cryogenic Infrastructure has performed successfully and will continue to serve the next generation experiment, called XENONnT, with a new Cryostat containing a total of 8.4 tons of xenon. I first give an instrument overview of the systems in XENON1T. I then review the cooling methods in LXe detectors which led to the design of the cooling system implemented in the XENON1T experiment, and suggest a design of the cooling system for future LXe dark matter experiments at the 50 tons scale. I describe and discuss in detail the design and the performance of the XENON1T Cryogenic Infrastructure. Finally, I describe the detector stability and the corresponding data selection in all three XENON1T science runs, and describe the dark matter search results from the one ton-year exposure.
202

Dark Matter in the Milky Way / Mörk materia i Vintergatan

Widmark, Axel January 2018 (has links)
Den här licenciatuppsatsen bygger på två vetenskapliga artiklar, varav den första är skriven som ensamförfattare och den andra är skriven tillsammans med Dr. Giacomo Monari. De är båda på temat mörk materia i Vintergatan. Den första artikeln handlar om mörk materia som fångas i solen. Förutsatt att mörk materia består av partiklar som interagerar via den svaga kraften, med en massa av storleksordningen 10--1000 GeV, så kan sådana partiklar kollidera med atomkärnor i solens inre, förlora rörelseenergi och bli gravitationellt bundna. Väl infångad så kommer en mörk materia--partikel att fortsätta kollidera och förlora rörelseenergi tills den har uppnått termisk jämvikt med solens kärna. Givet att infångade och termaliserade mörk materia--partiklar har blivit tillräckligt många till antalet så kan dessa partiklar annihiliera och producera standard modell--partiklar. Neutriner som produceras i en sådan process skulle kunna detekteras i ett neutrinoteleskop på jorden, vilket vore ett sätt att indirekt detektera mörk materia. I artikeln har jag utforskat denna termaliseringsprocess och den tid det tar för en infångad partikel att uppnå termisk jämvikt. Jag har funnit att termaliseringstiden är kort jämfört med solens ålder och kan försummas, utom i vissa finjusterade specialfall. I den andra artikeln har vi utfört en dynamisk mätning av massdensiteten i solens närområde. Astrometri från rymdteleskopet Gaia ger information om stjärnors vertikala hastighetsfördelning och hur deras antaltäthet avtar med avstånd från galaxskivan. Genom att anta jämvikt så kan man relatera dessa två fördelning till varandra genom gravitationspotentialen de rör sig genom, vilket i sin tur ger galaxskivans massfördelning. Först och främst så har vi gjort framsteg i fråga om statistisk modellering; för första gången har mätfel på alla enskilda stjärnor tagits i beaktning. Vi har funnit en massdensitet som stämmer överens med de flesta tidigare mätningar och har även kunnat dra slutsatser om solens position och hastighet i förhållande till galaxskivan.
203

A search for dark matter with bottom quarks

Kruskal, Michael 13 February 2016 (has links)
Despite making up over 80% of the matter in the universe, very little is known about dark matter. Its only well-established property is that it interacts gravitationally, but does not interact with ordinary matter through any of the other known forces. Specific details such as the number of dark matter particles, their quantum properties, and their interactions remain elusive and are only loosely constrained by experiments. In this dissertation I describe a novel search for a particular type of dark matter that couples preferentially to heavy quarks, using LHC proton-proton collisions at ATLAS. With a model-independent framework, comparisons are made to results obtained from other dark matter searches, and new limits are set on various interaction strengths.
204

Constraining Dark Matter Properties with Dwarf Galaxies and Galaxy Clusters

Kim, Stacy Yeonchi 30 October 2019 (has links)
No description available.
205

Exploring New Physics in the Dark Matter and Neutrino Sectors

Tammaro, Michele 22 October 2020 (has links)
No description available.
206

Design of the electron spectrometer for the HUNTER experiment and timescale of electron thermalization in liquid Argon for directional detection of WIMP dark matter

Granato, Francesco January 2022 (has links)
Neutrino physics has been going through rapid developments since the particle was first proposed by Pauli. The observation of neutrino oscillations has prompted an investigation of the issue of neutrino mass, with the "seesaw" mechanism garnering theoretical support. The HUNTER (Heavy Unseen Neutrinos from the Total Energy-momentum Reconstruction) experiment brings together AMO, nuclear physics and high energy physics researchers from Temple University, Houston University, UCLA and Princeton University to develop an apparatus capable of probing the keV-mass range of sterile neutrinos with high precision. The HUNTER detector makes use of the well-established COLTRIMS techniques for the collection of all the decay products of a neutrino-producing decay, and the reconstruction of their initial momenta and energies. Energy and momentum conservation allow then for the reconstruction of the missing neutrino mass.Electrons produced in the decay are guided towards their detector by an optimized set of electrodes paired to a magnetic field to confine their trajectories into spirals. A magnetic shield protects the electron from external stray fields that could alter their trajectories. A thorough study on the main source of background, namely the source scattering of ions, was conducted. As an additional topic, the feasibility of a directional-sensitive dark matter search experiment has been studied. Simple models of galactic dark matter distribution suggest that the motion of the Earth in space might introduce a directional anisotropy in the WIMPs momentum distribution at the Earth. The shape of a WIMP-like recoil in a target material could be be used to extract directional information for the incident WIMP, and thus confirm the anisotropy. The peculiar microphysics of liquid Argon requires thermalization of ionization electrons for a signal to form. To determine if directional information can be extracted, one needs to understand the energy spectrum of the electrons emitted in recoil event. Then, one needs a model to determine the time scale of the thermalization, and the distance to which the electrons travel. / Physics
207

Search for Gamma-ray Spectral Lines with the Fermi Large Area Telescope and Dark Matter Implications

Albert, Andrea Marie 09 August 2013 (has links)
No description available.
208

Searching For Satellite Galaxy Populations of Low-Mass Host Galaxies

Roberts, Daniella Marie 27 September 2022 (has links)
No description available.
209

Validation of Argon from Underground Sources for Use in the DarkSide-50 Detector

Alexander, Thomas R 30 November 2015 (has links)
Liquid argon is an attractive target for dark matter searches due to its low cost and exemplary event discrimination. However, atmospherically derived argon contains the beta-emitter 39Ar which confounds the growth of dual-phase time projection chamber (TPC) style detectors to the ton-scale. The DarkSide Collaboration seeks to bypass this limitation by extracting argon from deep underground, from a location known to contain significantly less 39Ar than atmospherically derived argon. This thesis will summarize the e orts taken to produce the first batch of underground argon, focusing on the first operation of the underground argon in a dual-phase TPC to validate the purity of the product, performed at Fermilab using the SCENE cryostat.
210

Quest for quantum signatures in Axion Dark Matter and Gravity

Fragkos, Vasileios January 2022 (has links)
This licentiate thesis in theoretical physics focuses on the existence of quantum features in physical systems such as axion dark matter and gravity. Our focus is mostly on effects which appear at low energies, a regime in which our models can be confronted with current experiments or within the foreseeable future. In our first project, we focus on squeezing of axion dark matter, a quantum mechanical effect which accompanies the standard mean field description of axions. We have showed that within a reasonable set of assumptions, the quantum state of axions is highly squeezed. This theoretical finding suggests that the mean field description of axion dark matter is incomplete, since the latter conceals many interesting and possibly experimentally relevant phenomena, and paves the way for axion dark matter studies beyond the mean field approximation. Moreover, in this thesis, some ongoing work on axion dark matter decoherence is presented. Our goal is to test whether axion dark matter squeezing is robust against decoherence. Preliminary results indicate that squeezing is not diminished in presence of environmental interactions. Our results stem from an interdisciplinary approach at the intersection between cosmology, quantum optics, quantum open systems and cold atoms. Our second work focuses on quantum features of gravity. An almost century old question is how gravity can be reconciled with the laws of quantum mechanics. This question remains still open and part of the reason is the lack of experimental evidence. However, in recent years, the rapid progress of experimental techniques allows for quantum control and manipulation of larger and larger quantum systems. These new experimental routes have sparkled an interest in testing such fundamental questions with tabletop experiments. One particularly interesting proposal aims to test whether gravity can mediate entanglement between two spatially superposed mesoscopic masses. This proposal, in order to deduce the existence of quantized gravitational mediators, relies on a quantum-information-theoretic argument, the so-called LOCC (Local Operations and Classical Communication). In our work, we critically assess this proposal, its underlying assumptions and what teaches about quantum gravity. We conclude that the LOCC argument is not useful and by invoking it, one cannot unambiguously infer the existence of quantum mediators unless the principle oflocality is elevated to a fundamental principle of nature. We support our claim by explicitly showing that well known relativistic field theories, apart from local formulations can also admit non-local ones. Therefore, the entanglement generating quantum channel can be either local or non-local.

Page generated in 0.0676 seconds