Spelling suggestions: "subject:"data mining cachine learning"" "subject:"data mining amachine learning""
21 |
Detekce síťových anomálií na základě NetFlow dat / Detection of Network Anomalies Based on NetFlow DataCzudek, Marek January 2013 (has links)
This thesis describes the use of NetFlow data in the systems for detection of disruptions or anomalies in computer network traffic. Various methods for network data collection are described, focusing especially on the NetFlow protocol. Further, various methods for anomaly detection in network traffic are discussed and evaluated, and their advantages as well as disadvantages are listed. Based on this analysis one method is chosen. Further, test data set is analyzed using the method. Algorithm for real-time network traffic anomaly detection is designed based on the analysis outcomes. This method was chosen mainly because it enables detection of anomalies even in an unlabelled network traffic. The last part of the thesis describes implementation of the algorithm, as well as experiments performed using the resulting application on real NetFlow data.
|
22 |
Porovnání metod získávání znalostí z dat / Comparing methods of knowledge discovery from dataJungmannová, Iva January 2019 (has links)
(in English): The thesis is devoted to the comparison of a few methods of mining knowledge from data. Methods decision tree, classification rules, cluster analysis, and Naive Bayes classifier were applied to the data sample. Data about clients of a non-profit organization Association of Civil Counseling were used. It has been worked according to the technological process of knowledge mining. In the thesis was applied data description, data preparation, modeling and testing and results from interpretation. Because of using the same sample of data and similar data preparation, overlapping results are also expected. The research is focused not only on results similarity, but also differences in results. The correlation between the amount of debt of clients and other attributes was found. In the results, there really were some patterns repeating through most of all methods. It turned out the amount of debt is related to a number of creditors. The more creditors, the higher amount of debt. Clients with a higher amount of liabilities had also higher debt. The results might not be surprising, but it proves the functionality of models and comparability of results.
|
23 |
Predi??o de Falhas em Sistemas de Telecomunica??es utilizando Algoritmos de Gera??o de ?rvores de Decis?o / Prediction of Failures in Telecommunication Systems using Decision Tree Generation AlgorithmsLima, Jos? Divino de 31 August 2017 (has links)
Submitted by SBI Biblioteca Digital (sbi.bibliotecadigital@puc-campinas.edu.br) on 2018-02-21T17:47:30Z
No. of bitstreams: 1
JOSE DIVINO DE LIMA.pdf: 3046765 bytes, checksum: a793279094d547961482cafe99be62cb (MD5) / Made available in DSpace on 2018-02-21T17:47:30Z (GMT). No. of bitstreams: 1
JOSE DIVINO DE LIMA.pdf: 3046765 bytes, checksum: a793279094d547961482cafe99be62cb (MD5)
Previous issue date: 2017-08-31 / The present dissertation work analyses telecommunication systems failures caused by internal and external agents. This analysis can be very challenging since such systems are complex and heterogeneous. Within this context, this work proposed a model that can be used to predict consequent failures from data samples. To do so, we have used a data mining tool and prediction algorithms that create decision trees. Applying the proposed model to a set of faults, generated by the system of a major telecommunications operator, it was demonstrated that it is possible to group faults with an accuracy of 85.96%. In this way, a process can be established that assists in the definition of grouping and correlation of failures, which allows that high level management systems can be configured more efficiently by their administrators. / O presente trabalho de disserta??o tem como principal objetivo a an?lise dos sistemas de telecomunica??o, os quais est?o cada vez mais complexos e heterog?neos e, em fun??o disso, suscet?veis a diversos tipos de falhas causadas tanto por fatores internos como externos, sendo estes ?ltimos devido ? integra??o com sistemas de terceiros. Dentro desse contexto, este trabalho apresenta, ent?o, um modelo que pode ser utilizado para prever falhas consequentes a partir de uma amostra de dados. Para tanto, utilizou-se uma ferramenta de minera??o de dados e algoritmos de predi??o, que criam ?rvores de decis?o. Aplicado o modelo proposto a um conjunto de falhas, gerado pelo sistema de uma grande operadora de telecomunica??es, demonstrou-se que ? poss?vel agrupar falhas com precis?o de 85,96%. Logo, pode-se estabelecer um processo que auxilia na defini??o do agrupamento e correla??o de falhas, permitindo que os sistemas de gest?o de alto n?vel possam ser configurados de maneira mais eficiente pelos administradores.
|
24 |
Modul pro klasifikaci výsledků v rámci e-learningového systému / A Module for Classification of Results in an e-Learning SystemKočvara, Jakub January 2017 (has links)
In this thesis we try using machine learning techniques to predict final grade of a student in a learning management system on the basis of his behavior during the semester. The aim is to determine the optimal technology for the extraction, treatment and machine learning on data. The whole system would then be implemented as a module that we will be able to plug in the existing system.
|
25 |
An Approach for Incremental Semi-supervised SVMEmara, Wael, Karnstedt, Mehmed Kantardzic Marcel, Sattler, Kai-Uwe, Habich, Dirk, Lehner, Wolfgang 11 May 2022 (has links)
In this paper we propose an approach for incremental learning of semi-supervised SVM. The proposed approach makes use of the locality of radial basis function kernels to do local and incremental training of semi-supervised support vector machines. The algorithm introduces a se- quential minimal optimization based implementation of the branch and bound technique for training semi-supervised SVM problems. The novelty of our approach lies in the in the introduction of incremental learning techniques to semisupervised SVMs.
|
26 |
Algorithmen zur automatisierten Dokumentation und Klassifikation archäologischer GefäßeHörr, Christian 23 June 2011 (has links)
Gegenstand der vorliegenden Dissertation ist die Entwicklung von Algorithmen und Methoden mit dem Ziel, Archäologen bei der täglichen wissenschaftlichen Arbeit zu unterstützen.
Im Teil I werden Ideen präsentiert, mit denen sich die extrem zeitintensive und stellenweise stupide Funddokumentation beschleunigen lässt. Es wird argumentiert, dass das dreidimensionale Erfassen der Fundobjekte mittels Laser- oder Streifenlichtscannern trotz hoher Anschaffungskosten wirtschaftlich und vor allem qualitativ attraktiv ist. Mithilfe von nicht fotorealistischen Visualisierungstechniken können dann wieder aussagekräftige, aber dennoch objektive Bilder generiert werden. Außerdem ist speziell für Gefäße eine vollautomatische und umfassende Merkmalserhebung möglich.
Im II. Teil gehen wir auf das Problem der automatisierten Gefäßklassifikation ein. Nach einer theoretischen Betrachtung des Typbegriffs in der Archäologie präsentieren wir eine Methodologie, in der Verfahren sowohl aus dem Bereich des unüberwachten als auch des überwachten Lernens zum Einsatz kommen. Besonders die letzteren haben sich dabei als überaus praktikabel erwiesen, um einerseits unbekanntes Material einer bestehenden Typologie zuzuordnen, andererseits aber auch die Struktur der Typologie selbst kritisch zu hinterfragen. Sämtliche Untersuchungen haben wir beispielhaft an den bronzezeitlichen Gräberfeldern von Kötitz, Altlommatzsch (beide Lkr. Meißen), Niederkaina (Lkr. Bautzen) und Tornow (Lkr. Oberspreewald-Lausitz) durchgeführt und waren schließlich sogar in der Lage, archäologisch relevante Zusammenhänge zwischen diesen Fundkomplexen herzustellen. / The topic of the dissertation at hand is the development of algorithms and methods aiming at supporting the daily scientific work of archaeologists.
Part I covers ideas for accelerating the extremely time-consuming and often tedious documentation of finds. It is argued that digitizing the objects with 3D laser or structured light scanners is economically reasonable and above all of high quality, even though those systems are still quite expensive. Using advanced non-photorealistic visualization techniques, meaningful but at the same time objective pictures can be generated from the virtual models. Moreover, specifically for vessels a fully-automatic and comprehensive feature extraction is possible.
In Part II, we deal with the problem of automated vessel classification. After a theoretical consideration of the type concept in archaeology we present a methodology, which employs approaches from the fields of both unsupervised and supervised machine learning. Particularly the latter have proven to be very valuable in order to assign unknown entities to an already existing typology, but also to challenge the typology structure itself. All the analyses have been exemplified by the Bronze Age cemeteries of Kötitz, Altlommatzsch (both district of Meißen), Niederkaina (district of Bautzen), and Tornow (district Oberspreewald-Lausitz). Finally, we were even able to discover archaeologically relevant relationships between these sites.
|
Page generated in 0.1753 seconds