• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 29
  • 8
  • 6
  • 4
  • 1
  • 1
  • Tagged with
  • 134
  • 38
  • 23
  • 22
  • 21
  • 20
  • 19
  • 19
  • 19
  • 18
  • 18
  • 18
  • 16
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

ChipCflow: tool for convert C code in a static dataflow architecture in reconfigurable hardware / ChipCflow: ferramenta para conversão de código C em uma arquitetura a fluxo de dados estática em harware reconfigurável

Silva, Antonio Carlos Fernandes da 19 February 2015 (has links)
A growing search for alternative architectures and softwares have been noted in the last years. This search happens due to the advance of hardware technology and such advances must be complemented by innovations on design methodologies, test and verification techniques in order to use technology effectively. Alternative architectures and softwares, in general, explores the parallelism of applications, differently to Von Neumann model. Among high performance alternative architectures, there is the Dataflow Architecture. In this kind of architecture, the process of program execution is determined by data availability, thus the parallelism is intrinsic in these systems. The dataflow architectures become again a highlighted search area due to hardware advances, in particular, the advances of Reconfigurable Computing and Field Programmable Gate Arrays (FPGAs). ChipCflow projet is a tool for execution of algorithms using dynamic dataflow graph in FPGA. In this thesis, the development of a code conversion tool to generate aplications in a static dataflow architecture, is described. Also the ChipCflow project where the code conversion tool is part, is presented. The specification of algorithm to be converted is made in C language and converted to a hadware description language, respecting the proposed by ChipCflow project. The results are the proof of concept of converting a high-level language code for dataflow architecture to be used into a FPGA. / Existe uma crescente busca por softwares e arquiteturas alternativas. Essa busca acontece pois houveram avanços na tecnologia do hardware, e estes avanços devem ser complementados por inovações nas metodologias de projetos, testes e verificação para que haja um uso eficaz da tecnologia. Os software e arquiteturas alternativas, geralmente são modelos que exploram o paralelismo das aplicações, ao contrário do modelo de Von Neumann. Dentre as arquiteturas alternativas de alto desempenho, tem-se a arquitetura a fluxo de dados. Nesse tipo de arquitetura, o processo de execução de programas é determinado pela disponibilidade dos dados, logo o paralelismo está embutido na própria natureza do sistema. O modelo a fluxo de dados possui a vantagem de expressar o paralelismo de maneira intrínseca, eliminando a necessidade do programador explicitar em seu código os trechos onde deve haver paralelismo. As arquiteturas a fluxo de dados voltaram a ser uma área de pesquisa devido aos avanços do hardware, em particular, os avanços da Computação Reconfigurável e dos Field Programmable Gate Arrays (FPGAs).Nesta tese é descrita uma ferramenta de conversão de código que visa a geração de aplicações utilizando uma arquitetura a fluxo de dados estática. Também é descrito o projeto ChipCflow, cuja ferramenta de conversão de código, descrita nesta tese, é parte integrante. A especificação do algoritmo a ser convertido é feita em linguagem C e convertida para uma linguagem de descrição de hardware, respeitando o modelo proposto pelo ChipCflow. Os resultados alcançados visam a prova de conceito da conversão de código de uma linguagem de alto nível para uma arquitetura a fluxo de dados a ser configurada em FPGA.
52

ChipCFlow - Partição e protocolo de comunicação no grafo a fluxo de dados dinâmico / ChipCFlow - partioning and communication protocol in the dynamic dataflow graph

Sanches, Lucas Barbosa 14 May 2010 (has links)
Este trabalho descreve a prova de conceito de uma abordagem que utiliza o modelo de computação a fluxo de dados, inerentemente paralelo, associado ao modelo de computação reconfigurável parcial e dinamicamente, visando à obtenção de sistemas computacionais de alto desempenho. Mais especificamente, trata da obtenção de um modelo para o particionamento dos grafos a fluxo de dados dinâmicos e de um protocolo de comunicação entre suas partes, a fim de permitir a sua implementação em arquiteturas dinamicamente reconfiguráveis, em especial em FGPAs Virtex da Xilinx. Enquadra-se no contexto do projeto ChipCFlow, de escopo mais amplo, que pretende obter uma ferramenta para geração automática de descrição de hardware sintetizável, a partir de código em alto nível, escrito em linguagem C, fazendo uso da abordagem a fluxo de dados para extrair o paralelismo implícito nas aplicações originais. O modelo proposto é aplicado em um grafo a fluxo de dados dinâmico, e através de simulações sua viabilidade é discutida / This work describes the concept of an approach that uses data ow computational model, inherently parallel, associated with de reconfigurable computing model, partial and dynamic, in order to obtain high performance computational systems. More specifically, it is about a model to the partitioning and communication between partitioned sectors of a CDFG (Control Data Flow Graph) in order to map these graphs on a partial reconfiguration FPGA fabric, in special Virtex II/II-Pro from Xilinx. It is part of the ChipCFlow project, that has a bigger scope, and that aims to automatically obtain syntetisable hardware descriptions, from high level code written in C and, by using a data flow approach to extract implicit parallelism in original applications. The model obtained is extensively explained and applied to an example of CDFG, where by means of simulations its feasibility is discussed
53

Gerenciamento de tags na arquitetura ChipCflow - uma máquina a fluxo de dados dinâmica / Tag management in ChipCflow architecture - a dynamic dataflow machine

Silva, Bruno de Abreu 15 April 2011 (has links)
Nos últimos anos, percebeu-se uma crescente busca por softwares e arquiteturas alternativas. Essa busca acontece porque houve avanços na tecnologia do hardware e estes avanços devem ser complementados por inovações nas metodologias de projetos, testes e verificação para que haja um uso eficaz da tecnologia. Muitos dos softwares e arquiteturas alternativas, geralmente partem para modelos que exploram o paralelismo das aplicações, ao contrário do modelo de von Neumann. Dentre as arquiteturas alternativas de alto desempenho, tem-se a arquitetura a fluxo de dados. Nesse tipo de arquitetura, o processo de execução de programas é determinado pela disponibilidade dos dados. Logo, o paralelismo está embutido na própria natureza do sistema. O modelo a fluxo de dados possui a vantagem de expressar o paralelismo de maneira intrínseca, eliminando a necessidade de o programador explicitar em seu código os trechos onde deve haver paralelismo. As arquiteturas a fluxo de dados voltaram a ser um tema de pesquisa devido aos avanços do hardware, em particular, os avanços da Computação Reconfigurável e os FPGAs (Field-Programmable Gate Arrays). O projeto ChipCflow é uma ferramenta para execução de algoritmos usando o modelo a fluxo de dados dinâmico em FPGA. Este trabalho apresenta o formato para os tagged-tokens do ChipCflow, os operadores de manipulação das tags dos tokens e suas implementações a fim de que se tenha a PROVA-DE-CONCEITOS para tais operadores na arquitetura ChipCflow / The alternative architectures and softwares researches have been growing in the last years. These researches are happening due to the advance of hardware technology and such advances must be complemented by improvements on design methodologies, test and verification techniques in order to use technology effectively. Many of the alternative architectures and softwares, in general, explore the parallelism of applications, differently to von Neumann model. Among high performance alternative architectures, there is the Dataflow Architecture. In this kind of architecture, the execution of programs is determined by data availability, thus the parallelism is intrinsic in these systems. The dataflow architectures become again a highlighted research area due to hardware advances, in particular, the advances of Reconfigurable Computing and FPGAs (Field-Programmable Gate Arrays). ChipCflow project is a tool for execution of algorithms using dynamic dataflow graph in FPGA. The main goal in this module of the ChipCflow project is to define the tagged-token format, the iterative operators that will manipulate the tags of tokens and to implement them
54

FPGA-based programmable embedded platform for image processing applications

Siddiqui, Fahad Manzoor January 2018 (has links)
A vast majority of electronic systems including medical, surveillance and critical infrastructure employs image processing to provide intelligent analysis. They use onboard pre-processing to reduce data bandwidth and memory requirements before sending information to the central system. Field Programmable Gate Arrays (FPGAs) represent a strong platform as they permit reconfigurability and pipelining for streaming applications. However, rapid advances and changes in these application use cases crave adaptable hardware architectures that can process dynamic data workloads and be easily programmed to achieve ecient solutions in terms of area, time and power. FPGA-based development needs iterative design cycles, hardware synthesis and place-and-route times which are alien to the software developers. This work proposes an FPGA-based programmable hardware acceleration approach to reduce design effort and time. This allows developers to use FPGAs to profile, optimise and quickly prototype algorithms using a more familiar software-centric, edit-compile-run design flow that enables the programming of the platform by software rather than high-level synthesis (HLS) engineering principles. Central to the work has been the development of an optimised FPGA-based processor called Image Processing Processor (IPPro) which efficiently uses the underlying resources and presents a programmable environment to the programmer using a dataflow design principle. This gives superior performance when compared to competing alternatives. From this, a three-layered platform has been created which enables the realisation of parallel computing skeletons on FPGA which are used to eciently express designs in high-level programming languages. From bottom-up, these layers represent programming (actor, multiple actors and parallel skeletons) and hardware (IPPro core, multicore IPPro, system infrastructure) abstraction. The platform allows acceleration of parallel and non-parallel dataflow applications. A set of point and area image pre-processing functions are implemented on Avnet Zedboard platform which allows the evaluation of the performance. The point function achieved 2.53 times better performance than the area functions and point and area functions achieved performance improvements of 7.80 and 5.27 times over sin- gle core IPPro by exploiting data parallelism. The pipelined execution of multiple stages revealed that a dataflow graph can be decomposed into balanced actors to deliver maximum performance by hiding data transfer and processing time through exploiting task parallelism; otherwise, the maximum achievable performance is limited by the slowest actor due to the ripple effect caused by unbalanced actors. The platform delivered better performance in terms of fps/Watt/Area than Embedded Graphic Processing Unit (GPU) considering both technologies allows a software-centric design flow.
55

Topics in Soft Computing

Keukelaar, J. H. D. January 2002 (has links)
No description available.
56

Benchmarking Points-to Analysis

Gutzmann, Tobias January 2013 (has links)
Points-to analysis is a static program analysis that, simply put, computes which objects created at certain points of a given program might show up at which other points of the same program. In particular, it computes possible targets of a call and possible objects referenced by a field. Such information is essential input to many client applications in optimizing compilers and software engineering tools. Comparing experimental results with respect to accuracy and performance is required in order to distinguish the promising from the less promising approaches to points-to analysis. Unfortunately, comparing the accuracy of two different points-to analysis implementations is difficult, as there are many pitfalls in the details. In particular, there are no standardized means to perform such a comparison, i.e, no benchmark suite - a set of programs with well-defined rules of how to compare different points-to analysis results - exists. Therefore, different researchers use their own means to evaluate their approaches to points-to analysis. To complicate matters, even the same researchers do not stick to the same evaluation methods, which often makes it impossible to take two research publications and reliably tell which one describes the more accurate points-to analysis. In this thesis, we define a methodology on how to benchmark points-to analysis. We create a benchmark suite, compare three different points-to analysis implementations with each other based on this methodology, and explain differences in analysis accuracy. We also argue for the need of a Gold Standard, i.e., a set of benchmark programs with exact analysis results. Such a Gold Standard is often required to compare points-to analysis results, and it also allows to assess the exact accuracy of points-to analysis results. Since such a Gold Standard cannot be computed automatically, it needs to be created semi-automatically by the research community. We propose a process for creating a Gold Standard based on under-approximating it through optimistic (dynamic) analysis and over-approximating it through conservative (static) analysis. With the help of improved static and dynamic points-to analysis and expert knowledge about benchmark programs, we present a first attempt towards a Gold Standard. We also provide a Web-based benchmarking platform, through which researchers can compare their own experimental results with those of other researchers, and can contribute towards the creation of a Gold Standard.
57

A Concurrent IFDS Dataflow Analysis Algorithm Using Actors

Rodriguez, Jonathan David January 2010 (has links)
There has recently been a resurgence in interest in techniques for effective programming of multi-core computers. Most programmers find general-purpose concurrent programming to be extremely difficult. This difficulty severely limits the number of applications that currently benefit from multi-core computers. There already exist many concurrent solutions for the class of regular applications, which include various algorithms for linear algebra. For the class of irregular applications, which operate on dynamic and pointer- and graph-based structures, efficient concurrent solutions have so far remained elusive. Dataflow analysis applications, which are often found in compilers and program analysis tools, have received particularly little attention with regard to execution on multi-core machines. Operating on the theory that the Actor model, which structures computations as systems of asynchronously-communicating entities, is a more appropriate method for representing irregular algorithms than the shared-memory model, this work presents a concurrent Actor-based formulation of the IFDS, or Interprocedural Finite Distributive Subset, dataflow analysis algorithm. The implementation of this algorithm is done using the Scala language and its Actors library. This algorithm achieves significant speedup on multi-core machines without using any optimistic execution. This work contributes to Actor research by showing how the Actor model can be practically applied to a dataflow analysis problem. This work contributes to static analysis research by showing how a dataflow analysis algorithm can effectively make use of multi-core machines, allowing the possibility of faster and more precise analyses.
58

Spatio-temporal patterns of biophysical parameters in a microtidal, bar-built, subtropical estuary of the Gulf of Mexico

Gable, George M., IV 15 May 2009 (has links)
Plankton communities are influenced, in part, by water exchange with adjacent estuarine and oceanic ecosystems. Reduced advective transport through tidal passes or with adjacent bay systems can affect chemical processes and biological interactions, such as nutrient cycling, phytoplankton abundance and productivity, community respiration, and zooplankton biovolume. The most threatened estuarine ecosystems are shallow, bar-built, microtidal estuaries with small water volumes and restricted connections through tidal passes and other water exchange points. This research explored spatio-temporal trends in plankton communities and the physicochemical environment in Mesquite Bay, Texas a microtidal, bar-built, subtropical estuary in the Gulf of Mexico. This research couples sampling at fixedstations for multiple physical and biological parameters with high-resolution spatial mapping of physicochemical parameters. Spatial trends were less in magnitude and affected fewer parameters in fixed station and spatial data. Two dimensional ordination plots indicated spatial heterogeneity with a more pronounced temporal trend affecting parameters including temperature, salinity as a function of inflow timing, and seasonal wind direction affecting primary production and zooplankton biovolume. Temperature was positively correlated with gross production and respiration rates during spring and late summer with sporadic positive and negative correlations with phytoplankton biomass. The timing and magnitude of freshwater inflow affected various physicochemical and biological parameters. Higher than 71-year inflow rates resulted in low salinity system wide, with spatial heterogeneity increasing over the course of the study, which was confirmed by spatial maps. Additionally, high inflow rates led to two periods of increased inorganic nutrients and dissolved organic matter. Low salinity periods coincided with persistence of higher turbidity, likely because of decreased sediment flocculation. Gross production was low at this time, and likely from light limitation. Additionally, wind magnitude and direction created spatial heterogeneity in turbidity levels and phytoplankton biomass. Zooplankton biovolume was highest during spring and late summer with high species diversity in total rotifers. Copepod biovolume and phytoplankton biomass were positively correlated. Other zooplankton taxonomic groups exhibited variable correlations with phytoplankton biomass and other taxonomic groups. Further long-term studies are needed to determine interactions of various components of trophic food-webs and account for interannual variability in all system parameters.
59

Topics in Soft Computing

Keukelaar, J. H. D. January 2002 (has links)
No description available.
60

Towards a Gold Standard for Points-to Analysis

Gutzmann, Tobias January 2010 (has links)
<p>Points-to analysis is a static program analysis that computes reference informationfor a given input program. It serves as input to many client applicationsin optimizing compilers and software engineering tools. Unfortunately, the Gold Standard – i.e., the exact reference information for a given program– is impossible to compute automatically for all but trivial cases, and thus, little can been said about the accuracy of points-to analysis.</p><p>This thesis aims at paving the way towards a Gold Standard for points-to analysis. For this, we discuss theoretical implications and practical challenges that occur when comparing results obtained by different points-to analyses. We also show ways to improve points-to analysis by different means, e.g., combining different analysis implementations, and a novel approach to path sensitivity.</p><p>We support our theories with a number of experiments.</p>

Page generated in 0.0338 seconds