Spelling suggestions: "subject:"debonding"" "subject:"rebonding""
181 |
A theoretical description of anisotropic chemical association and its application to hydrogen-bonded fluidsPeery, Travis B. 20 May 2003 (has links)
The thermodynamic and structural effects of highly anisotropic, short-ranged
attraction are investigated for single- and four-site interaction models using
Wertheim's multi-density graph theory of chemical association. Both models consist
of associating hard spheres, where the saturable attraction sites are described
by conical wells centered in the hard core and evaluated in the "sticky-spot" limit.
The resulting fluids then mimic many of the directional and steric-constrained
properties of hydrogen-bonded fluids.
The single-site model is used to explore the effects of dimerization upon
the well-known properties of a planar liquid-vapor interface. Apart from hard
sphere repulsion and sticky-spot attraction, a van der Waals-like dispersion interaction
is incorporated to generate the critical point. Association is treated within
Wertheim's thermodynamic perturbation theory, along with classical density functional
methods to determine the interfacial density profile. The direct correlation
functions which carry all bonding information are derived by means of the
associative Ornstein-Zernike equations with a Percus-Yevick-like closure relation.
The primary effects of dimerization are manifest in system thermodynamics. Critical
temperatures and densities are shifted from their non-associating values and
small, non-monotonic shifts in the correlation length and surface tension are also
observed. While these effects are accompanied by interface compositional changes,
any influence upon the density profile seems to be subsumed by use of the proper
T/T[subscript c].
The four-site, network-forming model is investigated as a prototype for the
thermodynamics and structural properties of water. Bonding interactions occur
between "hydrogen" and electron "lone pair" sites described in the sticky-spot
limit. System properties are derived under the ideal network approximation using
the same methods as for the one-site model and are found to qualitatively reproduce
some thermodynamic and connectivity features characteristic of real water.
Partial densities are calculated self-consistently within the theory, and most thermodynamic
quantities can be written in terms of the average number of hydrogen
bonds per molecule. An analytical structure factor is also derived for this model. / Graduation date: 2003
|
182 |
Gold Thermocompression Wafer BondingSpearing, S. Mark, Tsau, Christine H., Schmidt, Martin A. 01 1900 (has links)
Thermocompression bonding of gold is a promising technique for the fabrication and packaging microelectronic and MEMS devices. The use of a gold interlayer and moderate temperatures and pressures results in a hermetic, electrically conductive bond. This paper documents work conducted to model the effect of patterning in causing pressure non-uniformities across the wafer and its effect on the subsequent fracture response. A finite element model was created that revealed pattern-dependent local pressure variations of more than a factor of three. This variation is consistent with experimental observations of bond quality across individual wafers A cohesive zone model was used to investigate the resulting effect of non-uniform bond quality on the fracture behavior. A good, qualitative agreement was obtained with experimental observations of the load-displacement response of bonds in fracture tests. / Singapore-MIT Alliance (SMA)
|
183 |
The role of massage in stress, bonding and development of babies / Nelmarie BoshoffBoshoff, Nelmarie January 2008 (has links)
Thesis (M.Sc. (Psychology))--North-West University, Potchefstroom Campus, 2009.
|
184 |
Characterization of copper diffusion in advanced packaging /Zhang, Xiaodong. January 2007 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2007. / Includes bibliographical references (leaves 134-144). Also available in electronic version.
|
185 |
Fluid transport across bonded dentin interfacesYiu, Kar-yung, Cynthia. January 2006 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
|
186 |
Hydrogen Bonding Interactions of Ferrocene-peptides: From Molecule to Large Scale AssembliesBeheshti, Samaneh 10 December 2012 (has links)
The main goal of this thesis was to explore the role of H-bonding interactions in ferrocene peptide conjugates at the molecular and supramolecular level. With the help of detailed spectroscopic and crystallographic studies, the intermolecular association of a range of conjugates was studied and described here. It was shown that C-terminal modifications directed the supramolecular assembly. In the case of Fc[CO-Gly-Val-OH]2, the C-terminal carboxylate group directed intermolecular interactions, causing formation of a supramolecular architecture that was characterized by large solvent-filled hydrophobic channels. In the absence of this directional group, as was the case in Fc[CO-Leu-Val-OMe]2 extended β-sheets were formed. Hierarchical self-assembly of disubstituted ferrocene peptide conjugates possessing Gly-Val-Phe and Gly-Val-Phe-Phe peptide substituents gave rise to nano- and micro-sized assemblies. Spontaneous self-assembly of Fc-peptides through intra-and intermolecular hydrogen bonding interactions induced supramolecular building blocks, which further associated to fibers, large fibrous crystals, and twisted ropes. Next, intermolecular H-bonding interactions were studied using a surface-based approach. A fragment of the amyloid-beta (Aβ) peptide was bound to a gold surface through a C-terminal Cys. Various aspects of the peptide film were examined using different electrochemical and surface analytical techniques. The interaction of Congo red and of Lys-Leu-Val-Phe-Phe with the immobilized Aβ fragment was studied using electrochemical methods, showing responses that indicated intermolecular interactions. This surface approach was used to probe the interaction of a series of ferrocene peptides (Fc-CO-Leu-Val-Phe-Phe-OX and Fc-CO-Lys(Boc)-Leu-Val-Phe-Phe-OX with X=H and Me) with the surface-bound Aβ fragment. Biomolecular interactions between Fc-peptides and the Aβ-modified surface were studied by electrochemical methods. The current response of the Fc redox process was modulated by the interaction with the Aβ-modified surface.
|
187 |
Study of Au Ball Bond Mechanism and Reliability on Pd/Ni/Cu SubstrateHuang, Yan 01 June 2009 (has links)
Microelectronic wire bonding is a manufacturing process used to electrically connect integrated
circuits with circuit boards or other substrates. Conventionally, balls are molten at the end of a Au
bonding wire and subsequently bonded on Al metallization of a integrated circuit. However,
Pd/Ni metallization has recently been used for its improved mechanical properties.
The bondability, bonding mechanism, and reliability of Au ball bonds on Pd are studied in this
thesis. The substrates were produced in this project using three different materials. The base material
is polished Cu in the shape of a coupon (1.0 cm × 1.0 cm × 0.5 mm). Cu coupons are plated
with Ni (1.0 μm) using an electroless process, followed by electrolytic plating of a layer of Pd
(0.3 μm), resulting in an arithmetic mean roughness of the surface of 0.08 μm (baseline sample,
sample 0). Higher roughness values of 0.2, 0.4, and 0.5 μm are artificially produced by rolling
(sample 1), sanding (sample 2), and sandblasting (sample 3), respectively, on the Cu surface
before plating Ni and Pd.
A 25 μm diameter Au wire is used for bonding on the polished and roughened substrates with a
process temperature of T = 220 °C, and it was found that ≈ 4 % to ≈ 18 % less ultrasonic amplitude
was required for successful bonding on the roughened substrates compared to the polished
substrate. Bondability is measured by shear testing the ball bonds. An average ball bond strength
achieved on the polished substrate is 130 MPa. This value is lower on the roughened substrate
with the exception of the sandblasted substrate.
Long-term thermal aging at 250 °C was performed with ball bonds on samples 0-3 for durations
of ≈ 300 h. The reliability of the bonds is characterized by non-destructive contact resistance analysis
during aging and destructive cross section analysis after aging. Contact resistance values for
the ball bonds range from 1.6 to 3.5 mΩ at 20 °C before aging, and does not correlate with roughness.
For the baseline sample, contact resistance of the ball bonds decreases during aging by -6 %
(median value), which indicates electrical integrity of the interconnections at high temperature.
This decrease possibly is due to interfacial gap filling by Au or Pd diffusion. In contrast, the contact
resistance increases for the roughened samples 1-3 and changes are 0.4, 5, and 14 %, respectively
(median values). A conclusive explanation for this increase has not yet been found. After
250 h of aging, a TEM analysis showed Au to Pd diffusion in the baseline sample with a diffusion
depth of ≈ 0.1 μm Au. No intermetallics, voids, or contamination is found on the interfaces after
aging according to nanohardness, SEM, and TEM analyses. No bond lift-offs or electrical opens
were found for the aging temperature and durations chosen. No conclusive evidence for the presence
of Au-Pd intermetallics or voids is found.
|
188 |
A Study of the Electrical Flame Off Process During Thermosonic Wire Bonding with Novel Wire MaterialsPequegnat, Andrew January 2010 (has links)
Thermosonic ball bonding is the most popular method used to create electrical interconnects between integrated circuits (ICs) and substrates in the microelectronics industry. Traditionally gold (Au) wire is used, however with industry demands for lower costs and higher performance, novel wire materials are being considered. Some of these wire materials include Cu, insulated, and coated wires. The most promising of which being Cu wire. Some of the main issues with these wire materials is their performance in the electrical flame off (EFO) step of the wire bonding process. In the EFO step a ball called the free air ball (FAB) is formed on the end of the wire. The quality of the FAB is essential for reliable and strong ball bonds. In Cu wire bonding the hardness of the FAB and oxidation are the main issues. A hard FAB requires larger bonding forces and US levels to make the bond which increases the likelihood of damage to the IC. Excessive oxidation acts as a contaminant at the bond interface and can also influence the shape of the FAB. Shielding gases are required to reduce oxidation and improve FAB quality. This thesis focuses on the EFO process and the influence of EFO parameters and shielding gases on Au and Cu FABs. The primary focus of this thesis is to provide a better understanding of the EFO process in order to expedite the introduction of novel wire materials into industry.
Several different experiments are performed on an automated thermosonic wire bonder with 25 µm Au and Cu wires to investigate the EFO process during ball bonding. The effects of EFO parameters on the hardness and work hardening of FABs and the effects of shielding gas type and flow rates on the quality of the FABs are determined. The EFO discharge characteristics in different shielding gases is also studied to better understand how the composition of the atmosphere the FAB is formed in influences the energy input via the EFO electrical discharge.
Using the online deformability method and Vickers microhardness testing it is found that the EFO current (IEFO) and EFO time (tEFO) have a large influence on the hardness and work hardening of Au and Cu FABs. A harder FAB produced with a large IEFO and low tEFO will work harden less during deformation. The bonded ball will be softer than that of a FAB produced with a lower IEFO and higher tEFO. The online deformability method is found to be twice as precise as the Vickers microhardness test.
An online method for characterizing the quality of FABs is developed and used to identify shielding gas flow rates that produce defective FABs. The EFO process for an Au wire and two Cu wire materials is investigated in flow rates of 0.2-1.0 l/min of forming gas (5 % H2 + 95 % N2) and N2 gas. All three of the most common FAB defects are identified with this online method. It is found that good quality FABs cannot be produced above flow rates of 0.7 l/min and that H2 in the shielding gas adds a thermal component to the EFO process. It is recommended that the gas flow rate be optimized for each new wire type used.
The EFO discharge power is measured to be 12 % higher in a N2 gas atmosphere than in a forming gas atmosphere. The lower ionization potential of the forming gas leads to a higher degree of ionization and therefore lower resistance across the discharge gap. It was found that the discharge power does not determine the energy transferred to the wire anode because the Au FAB produced in forming gas has a 6 % larger diameter than that of the FABs produced in N2 gas. Other factors that effect the voltage of the EFO discharge include the controlled EFO current, the discharge gap, and the wire anode material.
|
189 |
Study of Au Ball Bond Mechanism and Reliability on Pd/Ni/Cu SubstrateHuang, Yan 01 June 2009 (has links)
Microelectronic wire bonding is a manufacturing process used to electrically connect integrated
circuits with circuit boards or other substrates. Conventionally, balls are molten at the end of a Au
bonding wire and subsequently bonded on Al metallization of a integrated circuit. However,
Pd/Ni metallization has recently been used for its improved mechanical properties.
The bondability, bonding mechanism, and reliability of Au ball bonds on Pd are studied in this
thesis. The substrates were produced in this project using three different materials. The base material
is polished Cu in the shape of a coupon (1.0 cm × 1.0 cm × 0.5 mm). Cu coupons are plated
with Ni (1.0 μm) using an electroless process, followed by electrolytic plating of a layer of Pd
(0.3 μm), resulting in an arithmetic mean roughness of the surface of 0.08 μm (baseline sample,
sample 0). Higher roughness values of 0.2, 0.4, and 0.5 μm are artificially produced by rolling
(sample 1), sanding (sample 2), and sandblasting (sample 3), respectively, on the Cu surface
before plating Ni and Pd.
A 25 μm diameter Au wire is used for bonding on the polished and roughened substrates with a
process temperature of T = 220 °C, and it was found that ≈ 4 % to ≈ 18 % less ultrasonic amplitude
was required for successful bonding on the roughened substrates compared to the polished
substrate. Bondability is measured by shear testing the ball bonds. An average ball bond strength
achieved on the polished substrate is 130 MPa. This value is lower on the roughened substrate
with the exception of the sandblasted substrate.
Long-term thermal aging at 250 °C was performed with ball bonds on samples 0-3 for durations
of ≈ 300 h. The reliability of the bonds is characterized by non-destructive contact resistance analysis
during aging and destructive cross section analysis after aging. Contact resistance values for
the ball bonds range from 1.6 to 3.5 mΩ at 20 °C before aging, and does not correlate with roughness.
For the baseline sample, contact resistance of the ball bonds decreases during aging by -6 %
(median value), which indicates electrical integrity of the interconnections at high temperature.
This decrease possibly is due to interfacial gap filling by Au or Pd diffusion. In contrast, the contact
resistance increases for the roughened samples 1-3 and changes are 0.4, 5, and 14 %, respectively
(median values). A conclusive explanation for this increase has not yet been found. After
250 h of aging, a TEM analysis showed Au to Pd diffusion in the baseline sample with a diffusion
depth of ≈ 0.1 μm Au. No intermetallics, voids, or contamination is found on the interfaces after
aging according to nanohardness, SEM, and TEM analyses. No bond lift-offs or electrical opens
were found for the aging temperature and durations chosen. No conclusive evidence for the presence
of Au-Pd intermetallics or voids is found.
|
190 |
A Study of the Electrical Flame Off Process During Thermosonic Wire Bonding with Novel Wire MaterialsPequegnat, Andrew January 2010 (has links)
Thermosonic ball bonding is the most popular method used to create electrical interconnects between integrated circuits (ICs) and substrates in the microelectronics industry. Traditionally gold (Au) wire is used, however with industry demands for lower costs and higher performance, novel wire materials are being considered. Some of these wire materials include Cu, insulated, and coated wires. The most promising of which being Cu wire. Some of the main issues with these wire materials is their performance in the electrical flame off (EFO) step of the wire bonding process. In the EFO step a ball called the free air ball (FAB) is formed on the end of the wire. The quality of the FAB is essential for reliable and strong ball bonds. In Cu wire bonding the hardness of the FAB and oxidation are the main issues. A hard FAB requires larger bonding forces and US levels to make the bond which increases the likelihood of damage to the IC. Excessive oxidation acts as a contaminant at the bond interface and can also influence the shape of the FAB. Shielding gases are required to reduce oxidation and improve FAB quality. This thesis focuses on the EFO process and the influence of EFO parameters and shielding gases on Au and Cu FABs. The primary focus of this thesis is to provide a better understanding of the EFO process in order to expedite the introduction of novel wire materials into industry.
Several different experiments are performed on an automated thermosonic wire bonder with 25 µm Au and Cu wires to investigate the EFO process during ball bonding. The effects of EFO parameters on the hardness and work hardening of FABs and the effects of shielding gas type and flow rates on the quality of the FABs are determined. The EFO discharge characteristics in different shielding gases is also studied to better understand how the composition of the atmosphere the FAB is formed in influences the energy input via the EFO electrical discharge.
Using the online deformability method and Vickers microhardness testing it is found that the EFO current (IEFO) and EFO time (tEFO) have a large influence on the hardness and work hardening of Au and Cu FABs. A harder FAB produced with a large IEFO and low tEFO will work harden less during deformation. The bonded ball will be softer than that of a FAB produced with a lower IEFO and higher tEFO. The online deformability method is found to be twice as precise as the Vickers microhardness test.
An online method for characterizing the quality of FABs is developed and used to identify shielding gas flow rates that produce defective FABs. The EFO process for an Au wire and two Cu wire materials is investigated in flow rates of 0.2-1.0 l/min of forming gas (5 % H2 + 95 % N2) and N2 gas. All three of the most common FAB defects are identified with this online method. It is found that good quality FABs cannot be produced above flow rates of 0.7 l/min and that H2 in the shielding gas adds a thermal component to the EFO process. It is recommended that the gas flow rate be optimized for each new wire type used.
The EFO discharge power is measured to be 12 % higher in a N2 gas atmosphere than in a forming gas atmosphere. The lower ionization potential of the forming gas leads to a higher degree of ionization and therefore lower resistance across the discharge gap. It was found that the discharge power does not determine the energy transferred to the wire anode because the Au FAB produced in forming gas has a 6 % larger diameter than that of the FABs produced in N2 gas. Other factors that effect the voltage of the EFO discharge include the controlled EFO current, the discharge gap, and the wire anode material.
|
Page generated in 0.0641 seconds