• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure of attractors and estimates of their fractal dimension / Estrutura de atratores e estimativas de suas dimensões fractais

Bortolan, Matheus Cheque 08 March 2013 (has links)
This work is dedicated to the study of the structure of attractors of dynamical systems with the objective of estimating their fractal dimension. First we study the case of exponential global attractors of some generalized gradient-like semigroups in a general Banach space, and estimate their fractal dimension in terms of themaximumof the dimension of the local unstablemanifolds of the isolated invariant sets, Lipschitz properties of the semigroup and rate of exponential attraction. We also generalize this result for some special evolution processes, introducing a concept of Morse decomposition with pullback attractivity. Under suitable assumptions, if (A, \'A POT. \') is an attractor-repeller pair for the attractor A of a semigroup {T (t ) : t 0}, then the fractal dimension of A can be estimated in terms of the fractal dimension of the local unstable manifold of \'A POT. \', the fractal dimension of A, the Lipschitz properties of the semigroup and the rate of the exponential attraction. The ingredients of the proof are the notion of generalized gradient-like semigroups and their regular attractors, Morse decomposition and a fine analysis of the structure of the attractors. Also, making use of the skew product semiflow and its Morse decomposition, we give some estimates of the fractal dimension of the pullback attractors of non-autonomous dynamical systems / Este trabalho é dedicado ao estudo da estrutura dos atratores de sistemas dinâmicos com o objetivo de obter estimativas de suas dimensões fractais. Primeiramente estudamos o caso de atratores globais exponenciais de alguns semigrupos gradient-like generalizados em um espaço de Banach geral, e estimamos suas dimensões fractais em termos da máxima dimensão das variedades instáveis locais dos conjuntos invariantes isolados, a propriedades de Lipschitz do semigrupo e da taxa de atração exponencial. Também generalizamos este resultado para alguns processos de evoluções especiais, introduzindo um conceito de decomposição de Morse com atração pullback. Sob hipóteses apropriadas, se (A, \'A POT. \') é um par atrator-repulsor para o atratorA de um semigrupo {T (t ) : t 0}, então a dimensão fractal de A pode ser estimada em termos da dimensão fractal da variedade instável de \'A POT. \', a dimensão fractal de A, as propriedades de Lipschitz do semigrupo e a taxa de atração exponencial. Os ingredientes da demonstração são a noção de semigrupos gradient-like e seus atratores regulares, decomposição de Morse e uma análise fina da estrutura dos atratores. Além disto, fazendo uso do skew product semiflow e sua decomposição de Morse, damos estimativas da dimensão fractal dos atratores pullback de sistêmas dinâmicos não-autônomos
2

Structure of attractors and estimates of their fractal dimension / Estrutura de atratores e estimativas de suas dimensões fractais

Matheus Cheque Bortolan 08 March 2013 (has links)
This work is dedicated to the study of the structure of attractors of dynamical systems with the objective of estimating their fractal dimension. First we study the case of exponential global attractors of some generalized gradient-like semigroups in a general Banach space, and estimate their fractal dimension in terms of themaximumof the dimension of the local unstablemanifolds of the isolated invariant sets, Lipschitz properties of the semigroup and rate of exponential attraction. We also generalize this result for some special evolution processes, introducing a concept of Morse decomposition with pullback attractivity. Under suitable assumptions, if (A, \'A POT. \') is an attractor-repeller pair for the attractor A of a semigroup {T (t ) : t 0}, then the fractal dimension of A can be estimated in terms of the fractal dimension of the local unstable manifold of \'A POT. \', the fractal dimension of A, the Lipschitz properties of the semigroup and the rate of the exponential attraction. The ingredients of the proof are the notion of generalized gradient-like semigroups and their regular attractors, Morse decomposition and a fine analysis of the structure of the attractors. Also, making use of the skew product semiflow and its Morse decomposition, we give some estimates of the fractal dimension of the pullback attractors of non-autonomous dynamical systems / Este trabalho é dedicado ao estudo da estrutura dos atratores de sistemas dinâmicos com o objetivo de obter estimativas de suas dimensões fractais. Primeiramente estudamos o caso de atratores globais exponenciais de alguns semigrupos gradient-like generalizados em um espaço de Banach geral, e estimamos suas dimensões fractais em termos da máxima dimensão das variedades instáveis locais dos conjuntos invariantes isolados, a propriedades de Lipschitz do semigrupo e da taxa de atração exponencial. Também generalizamos este resultado para alguns processos de evoluções especiais, introduzindo um conceito de decomposição de Morse com atração pullback. Sob hipóteses apropriadas, se (A, \'A POT. \') é um par atrator-repulsor para o atratorA de um semigrupo {T (t ) : t 0}, então a dimensão fractal de A pode ser estimada em termos da dimensão fractal da variedade instável de \'A POT. \', a dimensão fractal de A, as propriedades de Lipschitz do semigrupo e a taxa de atração exponencial. Os ingredientes da demonstração são a noção de semigrupos gradient-like e seus atratores regulares, decomposição de Morse e uma análise fina da estrutura dos atratores. Além disto, fazendo uso do skew product semiflow e sua decomposição de Morse, damos estimativas da dimensão fractal dos atratores pullback de sistêmas dinâmicos não-autônomos
3

Sistemas gradientes, decomposição de Morse e funções de Lyapunov sob perturbação / Gradient systems, Morse decomposition and Lyapunov functions under pertubation

Costa, Éder Rítis Aragão 14 March 2012 (has links)
Neste trabalho investigamos a existência de uma função de Lyapunov associada a um sistema de tipo gradiente, semigrupos ou processos de evolução. Para isso, um estudo detalhado da teoria de Morse desempenha um papel decisivo. Como principal consequência deste estudo obtemos a estabilidade dos sistemas gradientes sob perturbação (autônoma ou não). A aplicabilidade dos resultados abstratos que aqui discutimos é exemplificada estudando-se sistemas de equações diferenciais em espaços de Banach com acoplamento unilateral / In this work we investigated the existence of a Lyapunov function associated to a gradient-like system, semigroups or evolution processes. For that, a detailed study of Morse theory plays a central role. As the main consequence of this study we obtain the stability of gradient systems under perturbation (autonomous or not). The applicability of the abstract results discussed here is exemplified by studying systems of differential equations in Banach spaces with unilateral coupling
4

Continuidade de atratores para sistemas dinâmicos: decomposição de Morse, equi-atração e domínios ilimitados / Continuity of attractors for dynamical systems: Morse decompositions, equiattraction and unbounded domains

Costa, Henrique Barbosa da 28 July 2016 (has links)
Neste trabalho estudamos a dinâmica assintótica de problemas parabólicos sob vista de diferentes teorias, particularmente interessados na estabilidade das propriedades dinâmicas dos sistemas. Estudamos a equi-atração no caso não autônomo pelos semifluxos skew-product, que transformam o sistema dinâmico não autônomo em um autônomo num espaço de fase conveniente. Para modelos multívocos, em que o semifluxo é uma função cujos valores são conjuntos, desenvolvemos a decomposição de Morse e mostramos sua equivalência com a existência de um funcional de Lyapunov, que é um resultado muito importante na teoria de semigrupos. Também estudamos a continuidade da dinâmica assintótica de um problema parabólico em um domínio ilimitado quando o aproximamos por domínios limitados específicos. / In this work we study assimptotic properties of parabolic problems under some different view of points, particularlly interested in the stability properties of the systems. We study equi-attraction in the non autonomous case using skew-product semiflows, which transform the non autonomous dynamical system into a autonomous one in a convenient phase space. For multivalued semiflows, in which the semiflow is a set valued function, we develop the Morse decomposition and show its equivalence with admiting a Lyapunov funcional, wich is a important result on the semigroup theory. We also study the continuity of the asymptotic dynamic for a parabolic problem in an unbouded domain when we approach it by bounded ones.
5

Continuidade de atratores para sistemas dinâmicos: decomposição de Morse, equi-atração e domínios ilimitados / Continuity of attractors for dynamical systems: Morse decompositions, equiattraction and unbounded domains

Henrique Barbosa da Costa 28 July 2016 (has links)
Neste trabalho estudamos a dinâmica assintótica de problemas parabólicos sob vista de diferentes teorias, particularmente interessados na estabilidade das propriedades dinâmicas dos sistemas. Estudamos a equi-atração no caso não autônomo pelos semifluxos skew-product, que transformam o sistema dinâmico não autônomo em um autônomo num espaço de fase conveniente. Para modelos multívocos, em que o semifluxo é uma função cujos valores são conjuntos, desenvolvemos a decomposição de Morse e mostramos sua equivalência com a existência de um funcional de Lyapunov, que é um resultado muito importante na teoria de semigrupos. Também estudamos a continuidade da dinâmica assintótica de um problema parabólico em um domínio ilimitado quando o aproximamos por domínios limitados específicos. / In this work we study assimptotic properties of parabolic problems under some different view of points, particularlly interested in the stability properties of the systems. We study equi-attraction in the non autonomous case using skew-product semiflows, which transform the non autonomous dynamical system into a autonomous one in a convenient phase space. For multivalued semiflows, in which the semiflow is a set valued function, we develop the Morse decomposition and show its equivalence with admiting a Lyapunov funcional, wich is a important result on the semigroup theory. We also study the continuity of the asymptotic dynamic for a parabolic problem in an unbouded domain when we approach it by bounded ones.
6

Sistemas gradientes, decomposição de Morse e funções de Lyapunov sob perturbação / Gradient systems, Morse decomposition and Lyapunov functions under pertubation

Éder Rítis Aragão Costa 14 March 2012 (has links)
Neste trabalho investigamos a existência de uma função de Lyapunov associada a um sistema de tipo gradiente, semigrupos ou processos de evolução. Para isso, um estudo detalhado da teoria de Morse desempenha um papel decisivo. Como principal consequência deste estudo obtemos a estabilidade dos sistemas gradientes sob perturbação (autônoma ou não). A aplicabilidade dos resultados abstratos que aqui discutimos é exemplificada estudando-se sistemas de equações diferenciais em espaços de Banach com acoplamento unilateral / In this work we investigated the existence of a Lyapunov function associated to a gradient-like system, semigroups or evolution processes. For that, a detailed study of Morse theory plays a central role. As the main consequence of this study we obtain the stability of gradient systems under perturbation (autonomous or not). The applicability of the abstract results discussed here is exemplified by studying systems of differential equations in Banach spaces with unilateral coupling

Page generated in 0.057 seconds