• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transmission of digital images using data-flow architecture

Haddad, Nicholas January 1985 (has links)
No description available.
2

Developing models and algorithms to design a robust inland waterway transportation network under uncertainty

Nur, Farjana 07 August 2020 (has links)
This dissertation develops mathematical models to efficiently manage the inland waterway port operations while minimizing the overall supply chain cost. In the first part, a capacitated, multi-commodity, multi-period mixed-integer linear programming model is proposed capturing diversified inland waterway transportation network related properties. We developed an accelerated Benders decomposition algorithm to solve this challenging NP-hard problem. The next study develops a two-stage stochastic mixed-integer nonlinear programming model to manage congestion in an inland waterway transportation network under stochastic commodity supply and water-level fluctuation scenarios. The model also jointly optimizes trip-wise towboat and barge assignment decisions and different supply chain decisions (e.g., inventory management, transportation decisions) in such a way that the overall system cost can be minimized. We develop a parallelized hybrid decomposition algorithm, combining Constraint Generation algorithm, Sample Average Approximation (SAA), and an enhanced variant of the L-shaped algorithm, to effectively solve our proposed optimization model in a timely fashion. While the first two parts develop models from the supply chain network design viewpoint, the next two parts propose mathematical models to emphasize the port and waterway transportation related operations. Two two-stage, stochastic, mixed-integer linear programming (MILP) models are proposed under stochastic commodity supply and water level fluctuations scenarios. The last one puts the specific focus in modeling perishable inventories. To solve the third model we propose to develop a highly customized parallelized hybrid decomposition algorithm that combines SAA with an enhanced Progressive Hedging and Nested Decomposition algorithm. Similarly, to solve the last mathematical model we propose a hybrid decomposition algorithm combining the enhanced Benders decomposition algorithm and SAA to solve the large size of test instances of this complex, NP-hard problem. Both proposed approaches are highly efficient in solving the real-life test instances of the model to desired quality within a reasonable time frame. All the four developed models are validated a real-life case study focusing on the inland waterway transportation network along the Mississippi River. A number of managerial insights are drawn for different key input parameters that impact port operations. These insights will essentially help decisions makers to effectively and efficiently manage an inland waterway-based transportation network.
3

Risk optimization with p-order conic constraints

Soberanis, Policarpio Antonio 01 December 2009 (has links)
My dissertation considers solving of linear programming problems with p-order conic constraints that are related to a class of stochastic optimization models with risk objective or constraints that involve higher moments of loss distributions. The general proposed approach is based on construction of polyhedral approximations for p-order cones, thereby approximating the non-linear convex p-order conic programming problems using linear programming models. It is shown that the resulting LP problems possess a special structure that makes them amenable to efficient decomposition techniques. The developed algorithms are tested on the example of portfolio optimization problem with higher moment coherent risk measures that reduces to a p-order conic programming problem. The conducted case studies on real financial data demonstrate that the proposed computational techniques compare favorably against a number of benchmark methods, including second-order conic programming methods.
4

Decomposition algorithms for multi-area power system analysis

Min, Liang 17 September 2007 (has links)
A power system with multiple interconnected areas needs to be operated coordinately for the purposes of the system reliability and economic operation, although each area has its own ISO under the market environment. In consolidation of different areas under a common grid coordinator, analysis of a power system becomes more computationally demanding. Furthermore, the analysis becomes more challenging because each area cannot obtain the network operating or economic data of other areas. This dissertation investigates decomposition algorithms for multi-area power system transfer capability analysis and economic dispatch analysis. All of the proposed algorithms assume that areas do not share their network operating and economic information among themselves, while they are willing to cooperate via a central coordinator for system wide analyses. The first proposed algorithm is based on power transfer distribution factors (PTDFs). A quadratic approximation, developed for the nonlinear PTDFs, is used to update tie-line power flows calculated by Repeated Power Flow (RPF). These tie-line power flows are then treated as injections in the TTC calculation of each area, as the central entity coordinates these results to determine the final system-wide TTC value. The second proposed algorithm is based on REI-type network equivalents. It uses the Continuation Power Flow (CPF) as the computational tool and, thus, the problem of voltage stability is considered in TTC studies. Each area uses REI equivalents of external areas to compute its TTC via the CPF. The choice and updating procedure for the continuation parameter employed by the CPF is implemented in a distributed but coordinated manner. The third proposed algorithm is based on inexact penalty functions. The traditional OPF is treated as the optimization problems with global variables. Quadratic penalty functions are used to relax the compatible constraints between the global variables and the local variables. The solution is proposed to be implemented by using a two-level computational architecture. All of the proposed algorithms are verified by numerical comparisons between the integrated and proposed decomposition algorithms. The proposed algorithms lead to potential gains in the computational efficiency with limited data exchanges among areas.
5

Topics in Network Utility Maximization : Interior Point and Finite-step Methods

Akhil, P T January 2017 (has links) (PDF)
Network utility maximization has emerged as a powerful tool in studying flow control, resource allocation and other cross-layer optimization problems. In this work, we study a flow control problem in the optimization framework. The objective is to maximize the sum utility of the users subject to the flow constraints of the network. The utility maximization is solved in a distributed setting; the network operator does not know the user utility functions and the users know neither the rate choices of other users nor the flow constraints of the network. We build upon a popular decomposition technique proposed by Kelly [Eur. Trans. Telecommun., 8(1), 1997] to solve the utility maximization problem in the aforementioned distributed setting. The technique decomposes the utility maximization problem into a user problem, solved by each user and a network problem solved by the network. We propose an iterative algorithm based on this decomposition technique. In each iteration, the users communicate to the network their willingness to pay for the network resources. The network allocates rates in a proportionally fair manner based on the prices communicated by the users. The new feature of the proposed algorithm is that the rates allocated by the network remains feasible at all times. We show that the iterates put out by the algorithm asymptotically tracks a differential inclusion. We also show that the solution to the differential inclusion converges to the system optimal point via Lyapunov theory. We use a popular benchmark algorithm due to Kelly et al. [J. of the Oper. Res. Soc., 49(3), 1998] that involves fast user updates coupled with slow network updates in the form of additive increase and multiplicative decrease of the user flows. The proposed algorithm may be viewed as one with fast user update and fast network update that keeps the iterates feasible at all times. Simulations suggest that our proposed algorithm converges faster than the aforementioned benchmark algorithm. When the flows originate or terminate at a single node, the network problem is the maximization of a so-called d-separable objective function over the bases of a polymatroid. The solution is the lexicographically optimal base of the polymatroid. We map the problem of finding the lexicographically optimal base of a polymatroid to the geometrical problem of finding the concave cover of a set of points on a two-dimensional plane. We also describe an algorithm that finds the concave cover in linear time. Next, we consider the minimization of a more general objective function, i.e., a separable convex function, over the bases of a polymatroid with a special structure. We propose a novel decomposition algorithm and show the proof of correctness and optimality of the algorithm via the theory of polymatroids. Further, motivated by the need to handle piece-wise linear concave utility functions, we extend the decomposition algorithm to handle the case when the separable convex functions are not continuously differentiable or not strictly convex. We then provide a proof of its correctness and optimality.
6

Models and Algorithms to Solve Electric Vehicle Charging Stations Designing and Managing Problem under Uncertainty

Quddus, Md Abdul 14 December 2018 (has links)
This dissertation studies a framework in support electric vehicle (EV) charging station expansion and management decisions. In the first part of the dissertation, we present mathematical model for designing and managing electric vehicle charging stations, considering both long-term planning decisions and short-term hourly operational decisions (e.g., number of batteries charged, discharged through Battery-to-Grid (B2G), stored, Vehicle-to-Grid (V2G), renewable, grid power usage) over a pre-specified planning horizon and under stochastic power demand. The model captures the non-linear load congestion effect that increases exponentially as the electricity consumed by plugged-in EVs approaches the capacity of the charging station and linearizes it. The study proposes a hybrid decomposition algorithm that utilizes a Sample Average Approximation and an enhanced Progressive Hedging algorithm (PHA) inside a Constraint Generation algorithmic framework to efficiently solve the proposed optimization model. A case study based on a road network of Washington, D.C. is presented to visualize and validate the modeling results. Computational experiments demonstrate the effectiveness of the proposed algorithm in solving the problem in a practical amount of time. Finding of the study include that incorporating the load congestion factor encourages the opening of large-sized charging stations, increases the number of stored batteries, and that higher congestion costs call for a decrease in the opening of new charging stations. The second part of the dissertation is dedicated to investigate the performance of a collaborative decision model to optimize electricity flow among commercial buildings, electric vehicle charging stations, and power grid under power demand uncertainty. A two-stage stochastic programming model is proposed to incorporate energy sharing and collaborative decisions among network entities with the aim of overall energy network cost minimization. We use San Francisco, California as a testing ground to visualize and validate the modeling results. Computational experiments draw managerial insights into how different key input parameters (e.g., grid power unavailability, power collaboration restriction) affect the overall energy network design and cost. Finally, a novel disruption prevention model is proposed for designing and managing EV charging stations with respect to both long-term planning and short-term operational decisions, over a pre-determined planning horizon and under a stochastic power demand. Long-term planning decisions determine the type, location, and time of established charging stations, while short-term operational decisions manage power resource utilization. A non-linear term is introduced into the model to prevent the evolution of excessive temperature on a power line under stochastic exogenous factors such as outside temperature and air velocity. Since the re- search problem is NP-hard, a Sample Average Approximation method enhanced with a Scenario Decomposition algorithm on the basis of Lagrangian Decomposition scheme is proposed to obtain a good-quality solution within a reasonable computational time. As a testing ground, the road network of Washington, D.C. is considered to visualize and validate the modeling results. The results of the analysis provide a number of managerial insights to help decision makers achieving a more reliable and cost-effective electricity supply network.
7

Heuristic Methods For Job Scheduling In A Heat Treatment Shop To Maximize Kiln Utilization

Srinidhi, S 02 1900 (has links)
Scheduling in the context of manufacturing systems has become increasingly impor- tant in order for organizations to achieve success in dynamic and competitive scenarios. Scheduling can be described as allocation of available jobs over resources to meet the performance criteria defined in a domain. Our research work fo cuses on scheduling a given set of three-dimensional cylindrical items, each characterized by width wj , height hj, and depth dj , onto parallel non-identical rectangular heat treatment kilns, such that the capacities of the kilns is optimally used. The problem is strongly NP-hard as it generalizes the (one-dimensional) Bin Packing Problem (1BP), in which a set of n positive values wj has to be partitioned into the minimum number of subsets so that the total value in each subset does not exceed the bin capacity W. The problem has been formulated as a variant of the 3D-BPP by following the MILP approach, and we propose a weight optimization heuristic that produces solutions comparable to that of the LP problem, in addition to reducing the computational complexity. Finally, we also propose a Decomposition Algorithm (DA) and validate the perfor- mance effectiveness of our heuristic. The numerical analyses provides useful insights that influence the shop-floor decision making process.

Page generated in 0.0781 seconds