Spelling suggestions: "subject:"constraint generation algorithm"" "subject:"constrainte generation algorithm""
1 |
Models and Algorithms to Solve Electric Vehicle Charging Stations Designing and Managing Problem under UncertaintyQuddus, Md Abdul 14 December 2018 (has links)
This dissertation studies a framework in support electric vehicle (EV) charging station expansion and management decisions. In the first part of the dissertation, we present mathematical model for designing and managing electric vehicle charging stations, considering both long-term planning decisions and short-term hourly operational decisions (e.g., number of batteries charged, discharged through Battery-to-Grid (B2G), stored, Vehicle-to-Grid (V2G), renewable, grid power usage) over a pre-specified planning horizon and under stochastic power demand. The model captures the non-linear load congestion effect that increases exponentially as the electricity consumed by plugged-in EVs approaches the capacity of the charging station and linearizes it. The study proposes a hybrid decomposition algorithm that utilizes a Sample Average Approximation and an enhanced Progressive Hedging algorithm (PHA) inside a Constraint Generation algorithmic framework to efficiently solve the proposed optimization model. A case study based on a road network of Washington, D.C. is presented to visualize and validate the modeling results. Computational experiments demonstrate the effectiveness of the proposed algorithm in solving the problem in a practical amount of time. Finding of the study include that incorporating the load congestion factor encourages the opening of large-sized charging stations, increases the number of stored batteries, and that higher congestion costs call for a decrease in the opening of new charging stations. The second part of the dissertation is dedicated to investigate the performance of a collaborative decision model to optimize electricity flow among commercial buildings, electric vehicle charging stations, and power grid under power demand uncertainty. A two-stage stochastic programming model is proposed to incorporate energy sharing and collaborative decisions among network entities with the aim of overall energy network cost minimization. We use San Francisco, California as a testing ground to visualize and validate the modeling results. Computational experiments draw managerial insights into how different key input parameters (e.g., grid power unavailability, power collaboration restriction) affect the overall energy network design and cost. Finally, a novel disruption prevention model is proposed for designing and managing EV charging stations with respect to both long-term planning and short-term operational decisions, over a pre-determined planning horizon and under a stochastic power demand. Long-term planning decisions determine the type, location, and time of established charging stations, while short-term operational decisions manage power resource utilization. A non-linear term is introduced into the model to prevent the evolution of excessive temperature on a power line under stochastic exogenous factors such as outside temperature and air velocity. Since the re- search problem is NP-hard, a Sample Average Approximation method enhanced with a Scenario Decomposition algorithm on the basis of Lagrangian Decomposition scheme is proposed to obtain a good-quality solution within a reasonable computational time. As a testing ground, the road network of Washington, D.C. is considered to visualize and validate the modeling results. The results of the analysis provide a number of managerial insights to help decision makers achieving a more reliable and cost-effective electricity supply network.
|
2 |
[en] CO-OPTIMIZING POST-CONTINGENCY TRANSMISSION SWITCHING IN POWER SYSTEM OPERATION PLANNING / [pt] CO-OTIMIZANDO TRANSMISSION SWITCHING PÓSCONTINGÊNCIA NO PLANEJAMENTO DA OPERAÇÃO DE SISTEMAS DE POTÊNCIA25 May 2020 (has links)
[pt] Transmission switching já foi apresentado anteriormente como uma ferramenta capaz de prover benefícios significativos na operação de sistemas de potência, como redução de custos e aumento de confiabilidade. Dentro do contexto de mercados co-otimizados para energia e reservas, este trabalho endereça a co-otimização de transmission switching pós-contingência no planejamento da operação de sistemas elétricos. Os modelos propostos para programação diária e despacho econômico diferem de formulações existentes devido à consideração conjunta de três fatores complicadores. Primeiro, ações de transmission switching são consideradas nos estados pré e pós-contingência, portanto requerendo variáveis binárias pós-contingência. Adicionalmente, a programação de geradores e as ações de transmission switching são co-otimizadas. Além disso, a operação de geradores é caracterizada temporalmente em um contexto multi-período. Os modelos propostos são formulados como programas inteiros-mistos desafiadores para os quais os softwares comerciais comumente utilizados para modelos mais simples podem levar à intratabilidade até para instâncias de tamanho moderado. Como metodologia de solução, nós apresentamos uma versão aperfeiçoada de um algoritmo de geração de colunas e restrições aninhado, com a adição de restrições válidas para melhorar o desempenho computacional. Simulações numéricas demonstram o desempenho efetivo da abordagem proposta,
assim como suas vantagens econômicas e operacionais sobre modelos existentes que desconsideram o transmission switching pós-contingência. / [en] Transmission switching has been previously shown to offer significant benefits to power system operation, such as cost savings and reliability enhancements. Within the context of co-optimized electricity markets for energy and reserves, this work addresses the co-optimization of post contingency transmission switching in power system operation planning. The proposed models for unit commitment and economic dispatch differ from existing formulations due to the joint consideration of three major complicating factors. First, transmission switching actions are considered both in the preand post-contingency states, thereby requiring binary post-contingency variables. Secondly, generation scheduling and transmission switching actions are co-optimized. In addition, the time coupled operation of generating units is precisely characterized. The proposed models are formulated as challenging mixed-integer programs for which the off-the-shelf software customarily used for simpler models may lead to intractability even for moderatelysized instances. As a solution methodology, we present enhanced versions of an exact nested column-and-constraint generation algorithm featuring the inclusion of valid constraints to improve the overall computational performance. Numerical simulations demonstrate the effective performance of the proposed approach as well as its economic
and operational advantages over existing models disregarding post-contingency transmission switching.
|
3 |
[pt] ENSAIOS EM MODELOS DE DOIS ESTÁGIOS EM SISTEMAS DE POTÊNCIAS: CONTRIBUIÇÕES EM MODELAGEM E APLICAÇÕES DO MÉTODO DE GERAÇÃO DE LINHAS E COLUNAS / [en] ESSAYS ON TWO-STAGE ROBUST MODELS FOR POWER SYSTEMS: MODELING CONTRIBUTIONS AND APPLICATIONS OF THE COLUMN-AND-CONSTRAINT-GENERATION ALGORITHMALEXANDRE VELLOSO PEREIRA RODRIGUES 07 December 2020 (has links)
[pt] Esta dissertação está estruturada como uma coleção de cinco artigos formatados em capítulos. Os quatro primeiros artigos apresentam contribuições em modelagem e metodológicas para problemas de operação
ou investimento em sistemas de potência usando arcabouço de otimização robusta adaptativa e modificações no algoritmo de geração de linhas e colunas (CCGA). O primeiro artigo aborda a programação de curto prazo com restrição de segurança, onde a resposta automática de geradores é considerada. Um modelo robusto de dois estágios é adotado, resultando em complexas instâncias de programação inteira mista, que apresentam variáveis binárias associadas às decisões de primeiro e segundo estágios.
Um novo CCGA que explora a estrutura do problema é desenvolvido. O segundo artigo usa redes neurais profundas para aprender o mapeamento das demandas nodais aos pontos de ajuste dos geradores para o problema do primeiro artigo. O CCGA é usados para garantir a viabilidade da solução. Este método resulta em importantes ganhos computacionais em relação ao primeiro artigo. O terceiro artigo propõe uma abordagem adaptativa em dois estágios para um modelo robusto de programação diária no qual o
conjunto de incerteza poliedral é caracterizado diretamente a partir dos dados de geração não despachável observados. O problema resultante é afeito ao CCGA. O quarto artigo propõe um modelo de dois estágios adaptativo, robusto em distribuição para expansão de transmissão, incorporando incertezas a longo e curto prazo. Um novo CCGA é desenvolvido para lidar com os subproblemas. Finalmente, sob uma perspectiva diferente e generalista, o quinto artigo investiga a adequação de prêmios de incentivo para promover inovações em aspectos teóricos e computacionais para os desafios de sistemas de potência modernos. / [en] This dissertation is structured as a collection of five papers formatted as chapters. The first four papers provide modeling and methodological contributions in scheduling or investment problems in power systems
using the adaptive robust optimization framework and modifications to the column-and-constraint-generation algorithm (CCGA). The first paper addresses the security-constrained short-term scheduling problem where automatic primary response is considered. A two-stage robust model is adopted, resulting in complex mixed-integer linear instances featuring binary variables associated with first- and second-stage decisions. A new tailored CCGA which explores the structure of the problem is devised. The second paper uses deep neural networks for learning the mapping of nodal demands onto generators set point for the first paper s model. Robust-based modeling approaches and the CCGA are used to enforce feasibility for the solution. This method results in important computational gains as compared to results of the first paper. The third paper proposes an adaptive data-driven approach for a two-stage robust unit commitment model, where the polyhedral uncertainty set is characterized directly from data, through the convex hull of a set of previously observed non-dispatchable generation profiles. The resulting problem is suitable for the exact CCGA. The fourth paper proposes an adaptive two-stage distributionally robust transmission
expansion model incorporating long- and short-term uncertainties. A novel extended CCGA is devised to tackle distributionally robust subproblems. Finally, under a different and higher-level perspective, the fifth paper investigates the adequacy of systematic inducement prizes for fostering innovations in theoretical and computational aspects for various modern power systems challenges.
|
4 |
[en] ENSURING RESERVE DEPLOYMENT IN HYDROTHERMAL POWER SYSTEMS PLANNING / [pt] GARANTINDO A ENTREGABILIDADE DE RESERVAS NO PLANEJAMENTO DE SISTEMAS DE POTÊNCIA HIDROTÉRMICOSARTHUR DE CASTRO BRIGATTO 03 November 2016 (has links)
[pt] Atualmente a metodologia correspondente ao estado da arte utilizada
para o planejamento de médio-/longo-prazo da operação de sistemas elétricos
de potência é a Programação Dual Dinâmica Estocástica (PDDE). No entanto,
a tratabilidade computacional proporcionada por este método ainda
requer simplificaçõeses consideráveis de detalhes de sistemas reais de maneira a
atingir performaces aceitáveis em aplicações práticas. Simplificações feitas no
estágio de planejamento em contraste com a implementação das decisões podem
induzir políticas temporalmente inconsistentes e, consequentemente, um
gap de sub-otimalidade. Inconsisência temporal em planejamento hidrotérmico
pode ser induzida, por exemplo, ao assumir um coeficiente de produtividade
constante para as hidrelétricas, ao agregar os reservatórios, ao negligenciar a segunda
lei de Kirchhoff e neglienciando-se critérios de segurança em modelos de
planejamento. As mesmas restrições são posteriormente consideradas na etapa
de implementação do sistema. Esse fato pode estar envolvido com esvaziamento
não planejado de reservatórios e entregabilidade inadequada de reservas girantes.
Ambos podem levar a altos custos operacionais. Além disso, o sistema pode
ficar exposto a um risco sistêmico de racionamento e em última instâcia, blackouts. O gap de sub-otimalidade pode também levar a distorções em mercados
de energia. Assim, é razoável que as consequências da inconstência temporal
em sistemas hidrotérmicos sejam estudadas. Nesse sentido, este trabalho
propõe uma extensão de trabalhos já realizados relacionados à inconsistência
temporal para medir os efeitos de simplificações de modelagem em modelos
de planejamento resolvidos pela PDDE. A abordagem proposta consiste em
usar um modelo simplificado para o planejamento do sistema, que é feito pela
avaliação da função de recurso, e um modelo detalhado para a sua operação.
Estudos de caso envolvendo simplificações em modelagem de linhas de transmissão e critérios de segurança são realizados. No entanto, o foco deste trabalho
se dará na segunda fonte, já que a mesma apresenta maior complexidade na
caracterização do efeito. No entanto, a incorporação de critérios de segurança
é um grande desafio para operadores de sistemas elétricos, pois o tamanho
do modelo tende a crescer exponencialmente quando critérios de segurança
reforçados são aplicados. Motivado por isso, o principal objetivo deste trabalho
é propor uma nova abordagem ao problema que permite que critérios de
segurança possam ser incorporados em modelos de planejamento e consequentemente
garantir a entregabilidade de reservas em políticas de planejamento.
A formulação do problema é uma extensão multiperiodo e estocástica the modelos
de Otimização Robusta Ajustável que já foram propostos na literatura
para resolver o problema relacionado à dimensionalidade para um período. A
metodologia de solução involve um algoritmo híbrido Robusto-PDDE que por
meio do compartilhamento de estados de contingência ativos entre os períodos
e cenários de afluência é capaz de atingir tratabilidade computacional. Com a
nova abordagem proposta, é possível (i) resolver o problema de agendamento
ótimo das reservas em sistemas hidrotérmicos garantindo a entregabilidade das
reservas em um critério n - K e (ii) calcular o custo e os efeitos negativos de
se negligenciar critérios de segurança no planejamento. / [en] The current state of the art method used for medium/long-term planning studies of hydrothermal power system operation is the Stochastic Dual Dynamic Programming (SDDP) algorithm. The computational savings provided by this method notwithstanding, it still relies on major system simplifications to achieve acceptable performances in practical applications. Simplifications in the planning stage in contrast to the actual implementation might induce time inconsistent policies and, consequently, a sub-optimality gap. Time inconsistency in hydrothermal planning might be induced by, for instance, assuming a constant coefficient production for hydro plants, reservoir aggregation, neglecting Kirchhoff s voltage law, and neglecting security criteria in planning models, which are then incorporated in implementating models. Unaccounted for reservoir depletion and inadequate spinning reserve deliverability situations that were observed in the Brazilian power system might be induced by time inconsistency. And this can lead to higher operational costs. Both these consequences are utterly negative since they pose the system to a great systemic risk of energy rationing or ultimately, system blackouts. In addition, the suboptimility gap may also lead to energy markets distortions. Hence, it seems reasonable that further investigations on consequences of time inconsistency in hydrothermal planning should be undertaken. Along these lines, this work proposes an extension to previous work on the subject of time inconsistency to measure the effects of modeling simplifications in the SDDP framework for hydrothermal operation planning. The approach consists of using a simplified model for planning the system, which is done by means of the assessment of the recourse (cost-to-go) function, and a detailed model for its operation (implementation of the policy). Case studies involving simplifications in transmission lines modeling and in security criteria are carried out. Nevertheless, the focus of this work is on the later source as it is more difficult to address due to the complexity involved in the characterization of this effect. However, incorporating security criteria in planning models poses a major challenge to system operators. This is because the size of the model tends to grow exponentially as tighter security criteria are adopted. Motivated by this, the main objective of this work is to propose a new framework that allows security criteria to be incorporated in planning models and consequently ensure reserve deliverability in planning policies. The problem formulation is a multiperiod stochastic extension of Adjustable Robust Optimization (ARO) based models already proposed in literature to successfully address the dimensionality issue regarding the incorporation of security criteria n - K and its variants. The solution methodology involves a hybrid Robust-SDDP algorithm that by means of sharing active contingency states amongst periods and possible inflow scenarios in the SDDP algorithm is capable of achieving computational tractability. Then, with the proposed approach it is possible to (i) address the optimal scheduling of energy and reserve in hydrothermal power systems ensuring reserve deliverability under an n - K security criterion and (ii) assess the cost and side effects of disregarding security criteria in the planning stage.
|
Page generated in 0.1281 seconds