• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Existência e Unicidade dos Números Reais via Cortes de Dedekind

Pontes, Kerly Monroe 29 August 2014 (has links)
Submitted by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2015-05-27T12:50:34Z No. of bitstreams: 1 arquivototal.pdf: 643760 bytes, checksum: c6fc649a3682bb07bcc815ff2163eef4 (MD5) / Approved for entry into archive by Leonardo Americo (leonardo@sti.ufpb.br) on 2015-05-27T12:52:35Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 643760 bytes, checksum: c6fc649a3682bb07bcc815ff2163eef4 (MD5) / Made available in DSpace on 2015-05-27T12:52:35Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 643760 bytes, checksum: c6fc649a3682bb07bcc815ff2163eef4 (MD5) Previous issue date: 2014-08-29 / This work aims to show the existence and Uniqueness of the field of Real Numbers, using for this, Dedekind' Cuts theorem and the Definition by Recursion.To fulfill his goal, we define the notion of Dedekind Cut and present some of its properties; then introduce the notions of Archimedean Ordered and Field, Complete Field Sorted and finally articulate and demonstrate the Uniqueness Theorem of Field Real Numbers. / Este trabalho tem como objetivo mostrar a Existência e a Unicidade do Corpo dos Números Reais, usando para isso, os Cortes de Dedekind e o teorema da defi- nição por Recursão. Para cumprirmos tal objetivo, definimos a noção de Corte de Dedekind e apresentamos algumas de suas propriedades; em seguida, apresentamos as noções de Corpo, Corpo Ordenado e Arquimediano, Corpo Ordenado Completo e, finalmente, enunciamos e demonstramos o Teorema da Unicidade do Corpo dos Números Reais.

Page generated in 0.0477 seconds